
www.manaraa.com

  

 

 

REBURNING RENEWABLE BIOMASS FOR EMISSIONS CONTROL AND 

ASH DEPOSITION EFFECTS IN POWER GENERATION 

 

 

A Dissertation 

by 

HYUK JIN OH 

 

 

Submitted to the Office of Graduate Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of  

DOCTOR OF PHILOSOPHY 

 

 

August 2008 

 

 

Major Subject: Mechanical Engineering 



www.manaraa.com

3333745 
 

3333745 
 2008



www.manaraa.com

  

 

 

REBURNING RENEWABLE BIOMASS FOR EMISSIONS CONTROL AND 

ASH DEPOSITION EFFECTS IN POWER GENERATION 

 

A Dissertation 

by 

HYUK JIN OH 

 

Submitted to the Office of Graduate Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of  

DOCTOR OF PHILOSOPHY 

 

Approved by: 

Co-Chairs of Committee,   Kalyan Annamalai 
  Jerald Caton 
Committee Members,  Sai Lau 
  Adonios Karpetis 
Head of Department,  Dennis O’ Neal 

 

August 2008 

 

Major Subject: Mechanical Engineering 



www.manaraa.com

 iii

ABSTRACT 

 

Reburning Renewable Biomass for Emissions Control and Ash Deposition Effects in Power 

Generation. (August 2008) 

Hyuk Jin Oh, B.S., Chonbuk National University; 

M.S., Texas A&M University 

Co-Chairs of Advisory Committee: Dr. Kalyan Annamalai 
                                                Dr. Jerald Caton 

 

Cattle biomass (CB) has been proposed as a renewable, supplementary fuel for co-firing and 

reburning. Reburning coal with CB has the potential to reduce NOx and Hg emissions from coal 

fired systems. The present research focuses on three areas of combustion: 1) Biomass reburning 

experiments are conducted to determine the optimum operating conditions for the NOx reduction 

using blends of coal and CB as reburn fuels. 2) Since CB contains higher ash contents compared 

to coals, the fouling behavior is also investigated under the transient and short-time operation. 3) 

Finally CB contains higher Cl compared to coals, which oxidizes Hg to HgCl2. To understand 

the Hg oxidation behavior, a fundamental study of Hg oxidation in coal combustion is conducted 

using a plug flow reactor (PFR). 

The main parameters investigated are types of the reburn fuel, reburn equivalence ratios 

(ERRBZ), O2 concentrations in the reburn gas, injection angles of the reburn fuel, cross-sectional 

geometries of the reburn nozzles, symmetric and asymmetric reburn injections, reburn heat 

inputs, baseline NOx concentrations, and presence and absence of the heat exchangers (HEX). 

The results of reburning show that CB is a very effective fuel in NOx reduction, and the extent of 

NOx reduction is strongly dependent to the ERRBZ. The optimum conditions of the boiler 

operation for biomass reburning are as follows: ERRBZ = 1.1, 45° upward circular reburn nozzles, 
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12.5% O2 in the reburn gas, symmetric injection, and presence of HEXs. To make an effective 

reburn process, the baseline NOx concentrations must be higher than 230 g/GJ (0.5 lb/mmBTU) 

and the reburn heat input higher than 20%. 

The results of ash fouling show the presence of ash in the hotter region of the furnace seems 

to promote heat radiation thus augmenting the heat transfer to the HEX. The growth of the layer 

of ash depositions over longer periods typically lowers overall heat transfer coefficients. 

The addition of HCl to Hg containing gases in the PFR significantly increases Hg oxidations. 

The addition of NO inhibited the overall reaction and shifted the reaction temperature higher 

while the addition of O2 promoted Hg oxidations and lowered the reaction temperature. For 

heterogeneous cases, the use of the VWT catalyst promotes the reduction of Hg0 and shifted the 

reaction temperatures lower than those for homogeneous cases. 

 



www.manaraa.com

 v

DEDICATION 

 

 

 

 

 

 

To my lovely wife, son and daughter 

For their endless support and understanding 

 

 

And 

 

 

To my parents 

For their loving guidance to pursue my dreams 

 

 

 



www.manaraa.com

 vi

ACKNOWLEDGEMENTS 

 

I would like to express my deep appreciation to my adviser, Dr. Kalyan Annamalai, for the 

opportunity to join this outstanding research group and work on the hot and exciting project. 

Without his academic and economical supports, this work would never have been completed. 

I would like to give special thanks to my co-adviser, Dr. Jerald A. Caton who has advised 

me for my Master’s degree, for backing me up during a long period of my Master and Ph.D. 

degrees. 

Special thanks to my other committee members, Dr. Sai Lau and Dr. Adonios Karpetis, for 

their help, interest, and support on my research. 

Thanks also go to all of the graduate students who have worked with me in Coal and 

Biomass Energy Laboratory, in particular, Nicholas Carlin, Gerardo Gordillo, Benjamin 

Lawrence, Paul Goughnor, Uday Arcot V, and Pat Gomez. It was precious time and fun to 

discuss and chat with them, and it gave me so much energy. 

Finally, I would like to express my gratitude to my family and parents. Their endless love 

and support have been the foundation of my life and the cozy shelter of my sprit. 

This research was supported in part by Texas Commission on Environmental Quality 

(TCEQ) and Department of Energy (DOE - Pittsburgh Energy Technology Center and Golden 

Field Office). However, any findings, conclusions, or recommendations expressed herein are 

those of the author and do not necessarily reflect the opinions or views of TCEQ and DOE. 

 



www.manaraa.com

 vii

NOMENCLATURE 

 

AB Agricultural Biomass 

AFT Ash Fusion Temperature 

AGR Advance Gas Reburning 

As Rec. As Received 

ASTM American Society for Testing and Materials 

B/A Basic/Acidic Oxides 

BF Burnt Fraction 

BTU British Thermal Unit 

CAAA Clean Air Act Amendments 

CB Cattle Biomass or Cattle Manure 

CBEL Coal and Biomass Energy Laboratory 

CEMS Continuous Emission Monitoring System 

CFB Circulating Fluidized Bed 

Cl Chlorin 

CVAAS Cold-Vapor Atomic Absorption Spectrometry 

CVAFS Cold-Vapor Atomic Fluorescence Spectrometry 

DAF Dry Ash Free 

DB Dairy Biomass 

DOE-EIA Department Of Energy - Energy Information Administration 

DOE-NETL Department Of Energy - National Energy Technology Laboratory 

E3 Lab Engines, Emissions, and Energy Research Laboratory 

EPA Environmental Protection Agency 
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ER or φ Equivalence Ratio 

ESP Electrostatic Precipitator 

FB Feedlot Biomass 

FC Finished Compost 

FixC Fixed Carbon 

FF Fabric Filter 

FGD Flue Gas Desulphurization 

FGR Flue Gas Recirculation 

GPM Gallon per Minute 

HADB High Ash Dairy Biomass 

HAFB High Ash Feedlot Biomass 

HAPCFB High Ash Partially Composted Feedlot Biomass 

HC Hydrocarbon 

HEX Heat Exchanger 

Hg Mercury 

Hg0 Elemental Mercury 

Hg2+ Oxidized Form of Mercury 

Hgp Particle-Bound Mercury 

HgT Total Mercury 

HHV High Heating Value 

IC Internal Combustion 

I.D. Inner Diameter 

LADB Low Ash Dairy Biomass 

LAFB Low Ash Feedlot Biomass 
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LAPCFB Low Ash Partially Composted Feedlot Biomass 

LASS Low Ash Separated Solid 

LASSDB Low Ash Partially Composted Separated Solid Dairy Biomass 

LB Poultry Litter Biomass 

LHV Low Heating Value 

LMTD Log Mean Temperature Difference 

LNB Low-NOx Burner 

LOI Loss on Ignition 

MFC Mass Flow Controller 

MMF Mineral Matter Free 

MSW Municipal Solid Waste 

N Nitrogen 

NG Natural Gas 

NDIR Nondispersive Infrared Sensor 

NOx Nitrogen Oxides 

O.D. Outer Diameter 

OFA Overfire Air 

OH Ontario Hydro 

OHTC or U Overall Heat Transfer Coefficient 

PC Partially Composted 

PFR Plug Flow Reactor 

PM Particulate Matter 

PM-SDA Particulate Matter Spray Dryer Absorber 

RBZ Reburn Zone 
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RM Raw Manure 

RT Residence Time 

SATP Standard Ambient Temperature and Pressure 

SCCM Standard Cubic Centimeter per Minute 

SCFH Standard Cubic Feet per Hour 

SCR Selective Catalytic Reduction 

SDA Spray Dryer Absorber 

SLPM Standard Liters per Minute 

SMD or d32 Sauter Mean Diameter 

SNCR Selective Non-Catalytic Reduction 

SR or λ Stoichiometric Ratio 

SRI Southern Research Institute 

TAMU Texas A&M University 

TGA Thermogravimetric Analysis 

TXLC Texas Lignite Coal 

UV Ultraviolet 

VCM Volatile Combustible Matter 

VM Volatile Matter 

VWT Vanadium-Tungsten-Titanium or V2O5-WO3/TiO2 

WFGD Wet Flue Gas Desulfurization 

WYC Wyoming Subbituminous Coal 
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_________________ 
This dissertation follows the style of Combustion and Flame. 

1. INTRODUCTION 

 

This section presents the, causes of NOx and mercury (Hg) emissions, problems caused by them, 

and the current studies to reduce NOx and Hg emissions from power generation utilities using 

fossil fuels. Ash fouling which is one of the main problems in fossil fuel fired utilities is also 

introduced. Combustion of biomass fuels and their effects on both gaseous emissions and fouling 

problems are introduced. Finally the outline of the dissertation is given. 

 

 

1.1 NOx Emissions and Reductions 

Nitrogen oxides (NOx) is identified as byproducts of combustion in air, and the term used to 

describe primarily NO and NO2. NOx emissions causing environmental problems and human 

health concerns are generated from transportation (i.e. onroad and nonroad engines), electric 

utilities and other industrial sources. The environmental problems are acid rain, poor water 

quality, photochemical smog formation, global warming, and ground-level ozone formation. The 

human health effects by exposures to NOx are respiratory illness and pulmonary problems. The 

major sources of anthropogenic NOx emissions caused by human activities are mobile sources 

and stationary (or fuel combustion) sources. Though emissions from mobile sources have 

decreased 15% over the past 20 years, 12% increment has been reported for heavy duty vehicles 

equipped diesel engines over the past 10 years [1]. Since 1983 the steady increment of NOx 

emissions has also been reported for nonroad vehicles such as aircraft, locomotives and 

construction equipment [1]. NOx emissions from these two sources make up 93% of the total 

NOx emissions in 2002 [1]. Environmental Protection Agency (EPA) is developing new 

standards for these heavy duty and nonroad vehicles. 
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Figure 1.1. National NOx emissions from the electric coal-fired utilities [4]. 

 

 

Electric power utilities in the US consume 80% of the one billion tons of coal produced 

annually [2]. Coal will continue to be a dominant fuel used in the generation of electricity, thus 

new technologies of NOx emission controls must be developed to meet the stringent standard. 

Emission controls for fossil fuel combustion sources particularly coal-fired electric utility power 

generators have been regulated by Clean Air Act Amendments (CAAA). Phase I of the program 

started January 1, 1996 and has achieved the NOx reduction of 400,000 tons per year in the US. 

These reductions were achieved by the installation of low-NOx burner (LNB) on dry-bottom 

wall-fired and tangentially fired boilers [1, 3]. Phase II which began in the year 2000 established 

lower emission limit for the boilers in Phase I program, and established NOx emission limit for 

cell-burner, cyclone, wet-bottom wall-fired boilers, and other types of coal-fired boilers [1, 3]. 

Due to EPA regulations, NOx emissions are projected to decrease from 3.6 million short tons in 

2005 to 2.3 million short tons in 2030 as shown in figure 1.1. Phase II program will result in the 
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additional NOx reduction of 820,000 tons per year [3]. Figure 1.2 shows the geographic 

distribution of NOx emission based on the tonnage per square mile for each county in 2001. The 

eastern half produces heavier NOx emission than the other half of the country probably due to the 

density of industrial plants. 

 

 
Figure 1.2. Geographic distributions of NOx emissions for each county in 2001 [1]. 

 

 

NOx control techniques are classified into two categories: pre-combustion controls and post-

combustion controls. Pre-combustion controls reduce NOx formation during the combustion 

process, while post-combustion controls reduce NOx after it has been formed. Pre-combustion 

controls includes 1) low-NOx burners (LNBs), overfire air (OFA), flue gas recirculation (FGR), 

reburn process, and operational modifications such as changing equivalence ratio (ER or φ) for 

power plants and 2) spark timing and compression ratio for internal combustion (IC) engines. 
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Post-combustion controls include selective catalytic reduction (SCR) and selective non-catalytic 

reduction (SNCR). The prevalent applications of NOx control are a combination of the existed 

technologies such as LNB with reburning or reburning with OFA. Each technology will be 

reviewed later. 

 

1.2 Hg Emissions and Oxidations 

Mercury (Hg) emission could be traced to natural and anthropogenic sources. Natural 

sources of Hg emissions are volcanoes, geologic deposits, and volatilization from the ocean. 

Anthropogenic sources of Hg emissions are mainly combustion facilities such as electric utility 

power plants. Mercury emitted to the environment settles on agricultural lands, lakes, and 

oceans. Some of the absorbed Hg are converted into the most toxic form, methylmercury 

(CH3Hg), and enter the food chain. Health problems caused by Hg include memory loss, nerve 

system failure, skin rashes, muscle weakness, etc. In the 1990s, mercury was identified as a 

serious air pollutant by the U.S. EPA. Figure 1.3 presents an atmospheric mercury cycle on soil. 

Both elemental mercury (Hg0) and oxidized mercury (Hg2+), mainly mercuric chloride (HgCl2), 

are emitted from coal combustion sources and waste incinerators. Dry deposition is defined as 

the settlement of Hg on soil and is more likely to remove particulate forms of mercury from the 

environment. Wet deposition is defined as the removal of Hg via rain and other types of 

precipitation and is most efficient at removing oxidized forms of mercury in the air [5]. 

Elemental mercury is removed by dry deposition and wet deposition after oxidation by other 

pollutants (O3, H2O2, Cl2, and H2O) in the air. Mercuric chloride can be partially converted to 

Hg0 through reverse reactions. 
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Figure 1.3. Atmospheric mercury (Hg) cycles on soil [6]. 

 
 
 

 
Figure 1.4. Aquatic mercury (Hg) cycles under water [7]. 
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Figure 1.4 shows an aquatic mercury cycle under water. Mercury deposition to the aquatic 

ecosystems is primarily caused by the rainfall. oxidized mercury (Hg2+) is the major component 

deposited in water though some mercury can be released back to the atmosphere by 

volatilization. Methylmercury produced by the conversion of mercury is consumed partially by 

wildlife under water, enters the food chain and then cause problems for human health. 

 

 
Figure 1.5. National Hg emissions from the electricity generations [4]. 

 

 

Coal-fired electric utilities are the largest source of mercury emissions in the US. The EPA 

reported 48 tons out of 158 tons of Hg were released from coal-fired combustion sources, 28 

tons were released from industrial and commercial boilers, 30 tons were released from municipal 

waste combustors, and the rest were from medical waste, manufacturing, and natural sources in 

1997 [8, 9]. Figure 1.5 shows national Hg emissions from the electric coal-fired utilities. The Hg 

emissions are projected to decrease from 51.3 short tons in 2005 to 15.5 short tons in 2030, and 
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more stringent regulations have been proposed by several eastern States [4]. The five power 

plants in Texas were ranked in the top ten facilities which contributed to the largest amounts of 

Hg emission.  

Mercury in coal is vaporized as elemental forms at high temperatures in boilers, yielding 

vapor concentrations in the range of 1 to 20 ng/m3 [10]. Most coals typically contain 0.08 to 0.22 

μg of mercury per g of coal while bituminous coals contain 160 μg of chlorine per g of coal [9]. 

The mercury content is not a function of the coal rank (0.18 ppm for anthracite, 0.08 – 0.2 ppm 

for bituminous, 0.08 – 0.19 for subbituminous, and 0.13 – 0.22 for lignite) but is inversely 

proportional to the chlorine (Cl) content in coals. Typically, bituminous coals contain high Cl 

contents, and subbituminous and lignite coals contain low Cl contents. 

Mercury is typically released into air in three forms: elemental mercury (Hg0), particle-

bound mercury (Hgp) and oxidized mercury (Hg2+). Particle-bound mercury is easily captured by 

electrostatic precipitators (ESP) and fabric filters (FF), and Hg2+ is water soluble and likely to be 

absorbed by the fly ash from fuel combustion. However, elemental mercury is insoluble and 

difficult to capture. Therefore, the technology for the conversion of Hg0 into an oxidized form 

plays an important role in reducing Hg emissions. In solid fuel combustion systems, the 

elemental form of mercury is released at the high temperature, and reacts with gaseous O2, HCl, 

Cl2, and NOx in the combustor to produce oxidized forms such as HgCl2 or HgO [11]. The 

gaseous forms of oxidized Hg are captured on residual ash particles or fly ash particles. 

 

1.3 Alternative Fuel, Co-firing and Reburn Processes 

There is growing intent in alternate fuels due to concerns with the production of greenhouse 

gas and the rising cost of fuels used in power generation. Some well known alternative fuels are 

biomass, biodiesel, biogas, bioalcohol, and vegetable oil. Most alternative fuels serve as sources 
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of renewable energy. The renewable fuels are being extensively experimented either as co-fired 

fuels [12 – 26] or as reburn fuels [3, 23, 27 – 43]. Co-firing is defined as the firing of two 

dissimilar fuels in the boiler. In the mixed method of the co-firing technique, the alternate fuel is 

mixed with coal before the coal feeder, and the blend is fired in existing pulverized coal-fired 

boiler burners. In the reburn process of the co-firing technique, an additional fuel usually natural 

gas (NG) is injected downstream of coal-fired boiler burners and burn under fuel-rich conditions 

in order to reduce NOx generated by coal burners. Then OFA is introduced beyond the reburn 

zone (see figure 1.6) in order to complete combustion. A conventional, vertically upward-fired 

coal-fired burner in reburn technology with OFA is presented in figure 1.6 [3]. In this 

dissertation, emphasis is given to the reburn process of the co-firing technique.  

 

 
Figure 1.6. A schematic of a conventional, vertically upward coal-fired burner in reburning with 

OFA [3]. 
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Due to the high cost of NG ($6 to $7 per mmBTU reported in 2007), alternate fuels (e.g., 

biomass) and coals ($1.5 to $2 per mmBTU) are used as reburn fuels [44, 45]. As alternate fuels, 

biomass fuels have attracted a lot of attention in recent years due to growing energy needs and 

shrinking fossil fuel supplies. Animal wastes such as cattle, chicken and pig manure have been 

proposed as co-fried fuels in coal-fired boiler facilities. Cattle manure (termed as cattle biomass, 

CB) as a reburn fuel in a small scale coal-fired boiler was first tested in Coal and Biomass 

Energy Laboratory (CBEL) at Texas A&M University (TAMU) [27]. The results revealed about 

an 80% reduction in NOx emissions, and the process has resulted in an US Patent # 6,973,883 

issued to Annamalai and Sweeten [46]. Extensive research in CBEL at TAMU has been done in 

the area of CB combustion as a technology to reduce coal consumption, reduce fuel costs, lower 

emissions, and dispose of biomass [2, 12, 13, 15, 22, 25, 27, 41, 47, 48, 49, 50]. It was found that 

co-firing 10% agricultural biomass (AB) with coal reduced NOx emissions by about 10% since N 

is low in AB, but the CO emissions increased [12]. This new technology has the potential to 

reduce NOx emissions in coal-fired boilers located near cattle feedlots and also relieves the cattle 

industry of the waste material. 

 

1.4 Ash Fouling 

Since the massive usage of subbituminous coals in the 1980s, the ash fouling problems for 

heat exchangers (HEXs) in utility boilers have increased even at low temperatures due to high 

level of calcium in the subbituminous coals [51]. Fouling is defined as any kind of inorganic 

deposits accumulated on HEXs during the combustion. The low heat transfer rate caused by the 

ash depositions in lignite utility boilers reduces the boiler efficiency. Cattle biomass (i.e., cattle 

feedlot biomass, FB) contains higher amounts of ash than coals, thus the use of CB as a co-fired 

or reburn fuel will generate more ash in the boiler resulting in more ash deposition on HEXs and 
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hence increase corrosion, slagging, and fouling problems. The primary purpose of the boiler is to 

transfer heat from hot flue gases to the cold water/steam circulated through HEXs. Hence heat 

transfer rate is affected. The reduction of heat rates caused by build up is used to study the ash 

fouling characteristic. Annamalai et al. used a 150 kW (500,000 BTU/h) pilot plant facility 

located at Department of Energy - National Energy Technology Laboratory (DOE-NETL) 

facility in Pittsburgh in order to study the ash fouling behavior of coal and FB blends in co-firing 

conditions [25]. It is reported that ash deposition causes heat transfer rate to decrease with time 

due to ash buildup, and this deposition is more severe for blends of coal and high ash FB than for 

pure coal. The extent of combustion and fouling depend on the type of FB and the amount of 

ash. Thus, ash fouling potential must be evaluated when this fuel is used for co-firing or 

reburning. Fouling using fiber cane and sugar cane bagasse has been evaluated in co-firing pilot- 

and full-scale experiments, and the composition and microstructure of ash deposits were 

analyzed [14]. Compact ash deposits of high density were produced by the coal combustion 

while low density and high porous structure deposits were produced by the pure biomass 

combustion. It was found that high levels of potassium and sulfur were the key factors to 

produce higher density of fouling. 

Small ash particles tend to stick to the surface of the HEX while large ash particles impact. 

Sodium sulfate (Na2SO4) is one of the important compounds of ash particles which cause sticky 

behavior at low temperatures while glassy silicate-based components are responsible to make ash 

particles sticky at high temperatures [51, 52]. The ash fouling can cause 60% decrease of the 

heat transfer [53]. It was also suggested that the velocity of the flue gas and the fluid in the HEX 

affect the ash fouling behavior. The optimum velocity of the flue gas to destroy ash layers built 

on the HEX was investigated and the minimum velocity of the flue gas for avoiding particulate 

fouling was determined [54].  
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Fouling problems increase the operating cost of electric utility power plants. Self-cleaning 

systems are required to increase the boiler performance (e.g., soot blower) and the heat transfer 

efficiency and to decrease the operation cost and corrosion conditions of HEXs. 

 

1.5 Outline 

The dissertation is divided into 9 sections and organized in the following format.  

Section 2 presents literature reviews on the formation and destruction mechanisms of NOx 

and Hg. The reduction technologies and their effectiveness are presented with particular 

emphasis on the reburn technology using coal and biomass as reburn fuels. The formation and 

removal of ash fouling are also briefly reviewed.  

In Section 3, objectives and detailed tasks are presented.  

The description of experimental facilities is presented in Section 4: the reburn boiler 

facilities for studies of NOx reduction and fouling and the plug flow reactor (PFR) facilities for 

studies of Hg oxidation. Experimental methods, procedures, and cases are described. The 

operating conditions of the facilities before the actual tests are also presented. 

All methodologies used to analyze the results are described in Section 5. The fuel analysis 

includes proximate analysis, ultimate analysis, fuel particle size analysis, and ash analysis. In 

order to compare the results, the emission and HEX analyses are presented. The fuel nitrogen 

conversion efficiencies and the ash formation analyses for the combustion performances are also 

described. In order to ensure the accuracy of the results, the uncertainty and repeatability 

analyses are presented. 

Section 6 presents the results and discussion of NOx reduction during the biomass reburning 

using a bench-scale boiler. The variables studied include: reburn fuels, reburn equivalence ratios 
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(ERRBZ or φRBZ), reburn heat inputs, non-vitiated/vitiated reburn gases, heat exchangers (HEXs), 

reburn injection configurations, and baseline NOx concentrations. 

Section 7 presents and discusses the results of the fouling behavior during the biomass 

reburning under the transient and short-time operations. 

The Section 8 covers the Hg emissions from the bench-scale reburn boiler as well as the 

results of the fundamental study for Hg oxidation or reduction using a PFR under homogeneous 

and heterogeneous oxidation conditions. 

Finally, Section 9 summarizes the conclusions drawn from the current work and presents 

recommendations for the further research. 
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2. LITERATURE REVIEW OF NOx AND MERCURY FORMATIONS AND 

DESTRUCTIONS IN POWER GENERATION 

 

Literature is reviewed on combustion process of coal and biomass fuels, the formation and 

destruction mechanisms of NOx and Hg, the currently available reduction technologies, the 

effectiveness of the various technologies, and ash fouling problems in coal-fired power plants 

using coal and biomass as reburn fuels. Further, brief summaries of previous and current studies 

of reburning and Hg reduction are presented. 

 

 

2.1 Coal and Biomass Combustion 

2.1.1 Biomass as a Renewable Energy Source 

Biomass typically refers to plant derived material which can be used as fuel and is used to 

describe waste products and dedicated energy crops [15]. More generally biomass includes 

animal wastes, dedicated energy crops, forest products, and industrial wastes. The animal wastes 

which are led with agricultural rations include cattle manure, pig waste and poultry litter. The 

dedicated energy crops include sorghum, sugar cane, corn husks, and wheat chaff. The forest 

products are materials mainly from logging residues. The industrial wastes include municipal 

waste, sewage sludge, garbage, and landfill gas. The use of biomass for combustion benefits to 

utilities and environments since blending biomass and coal can reduce net emissions of CO2 and 

SO2. Biomass is a CO2 neutral fuel due to the majority of CO2 released during combustion can 

be traced from plants and is reabsorbed by plants. Thus, net CO2 released is near zero. Dutch 

utilities realized more than 3 million tons of CO2 per year can be reduced by the substitution of 

coal with biomass [16]. Most agricultural biomass fuels have very little or no sulfur, thus SO2 
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emissions can also be reduced by biomass combustion. Biomass can be used for direct co-firing 

and indirect co-firing. In the direct co-firing system, pre-processed biomass is directly fed to the 

boiler. In the indirect co-firing system, biomass is gasified, and its syngas is fed to the boiler. 

Many studies have been done in the part on coal and biomass combustion as a technology for 

reducing emissions of air pollutants, expenses of fuels and consumptions of coal and biomass. 

Some biomass fuels used in co-firing or reburning studies are: cattle manure [12, 22, 39, 41], 

sewage sludge [17, 40, 55], sawdust [18, 40], municipal solid waste [56], straw [19, 20], and 

wood [21, 34, 36, 57]. 

The average cattle feedlot may hold over 10,000 head of cattle, and it is estimated that there 

are over 10 million cattle in feedlots in the US at any given time [58]. The Texas Panhandle 

region (the largest region of cattle feeding in Texas) produces about 7.2 million fed cattle, and 

the amounts of animal wastes have doubled since 1978 [13]. If not carefully disposed of the 

cattle feedlot biomass (FB) may lead to water and air pollution problems. Heavy rains wash 

manure off the feedlot surface into local water streams, or nearby sources of drinking water. 

Stored manure emits pollutant gases and creates an odor, dust, and fly problems, particularly in a 

long term stockpile. Limited amounts of manure can be applied safely and economically to farm 

land as a fertilizer. Solving the disposal problem of manure is to use it as an energy source to 

generate electrical power. Cattle manure (termed as cattle biomass, CB) can be used as a 

renewable energy source to generate electrical power. The combustion application of CB has 

achieved only limited success due to its high moisture, low heating value, high sulfur, high 

nitrogen, and high ash [59]. The high moisture and ash contents of CB result in flame stability 

problems in direct combustion. 
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Figure 2.1. Classifications of cattle biomass (CB). 

 

 

Two types of CB, feedlot biomass (FB) and dairy biomass (DB) can be used for reburn and 

co-firing processes to reduce gaseous emissions. The classification of CB is presented in figure 

2.1. CB is classified by which surface it is collected from. For FB, manure is removed from two 

types of feedpen surfaces. Manure collected on soil surfaces contains high amounts of ash and is 

termed high ash FB (HAFB) while one collected on fly ash paved surfaces contains low ash 

content and is termed as low ash FB (LAFB). For DB from dairy farms, manure collected on soil 

surfaces contains high amounts of ash and is termed high ash DB (HADB) while one collected 

on concrete surfaces contains low ash content and is termed as low ash DB (LADB). Sometimes, 

solid is separated from water flushed manure by a solid separator, which contains low ash, and it 

termed as low ash separated solid (LASS). Processes of the collection, storage, and disposal of 

CB are described elsewhere [59]. CB is also characterized by the composting process. Samples 

prior to composting are termed as raw manure (RM), and samples taken after about 45 days of 
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composting involving successive wetting and turning cycles are termed partially composted (PC) 

[47]. Samples taken after about 120 days of composting (involving continuing wetting and 

turning cycles) are termed finished compost (FC). The composting process increases the quality 

of CB for use as a fertilizer and an energy source by increasing the homogeneity. The action of 

aerobic bacteria in CB raises the temperature (exothermic process), and the properties of CB are 

changed [59]. Amounts of nitrogen and moisture in CB are reduced, and nitrogen is converted to 

a non-volatile form during the composting process. Samples are typically analyzed for the 

following parameters: proximate, ultimate, BTU, ash elemental analysis, chlorine, phosphorus, 

and metals in ash. Like coals, CB has fixed carbon (FixC), volatile matter (VM), moisture, and 

ash. The major elements include C, H, O, N, and S. Pyrolysis, ignition, and fuel characteristics of 

CB are described elsewhere [60]. 

 

2.1.2 Process of Coal and Biomass Combustion 

Coals are classified into four major categories called “ranks” based on heating value, VM 

content, FixC content, and agglomerating behavior, and each rank is subdivided into groups 

based on decreasing heating value and FixC and increasing VM [9]. The coal ranks are explained 

from the highest to the lowest. Anthracite coals are the highest rank class of nonagglomerating 

coals containing FixC > 86% and VM < 14% on a dry, mineral-matter-free (MMF) basis. This 

coal rank is subdivided into meta-anthracite, anthracite and semi-anthracite coals. Bituminous 

coals contain FixC < 86% and 14% VM on a dry, MMF basis, and a heating value > 10,500 

BTU/lb on a moist, MMF basis. They are subdivided into low-volatile bituminous, medium-

volatile bituminous, high-volatile bituminous A, B, and C. Subbituminous coals 

(nonagglomerating coals) have a heating value between 8,300 and 11,500 BTU/lb on a moist, 

MMF basis. This coal rank is subdivided into subbituminous A (10,500 to 11,500 BTU/lb), 
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subbituminous B (9,500 to 10,500 BTU/lb) and subbituminous C (8,300 to 9,500 BTU/lb). 

Lignite coals are the lowest coal rank having heating value < 8,300 BTU/lb on a moist, MMF 

basis and subdivided into lignite A (6,300 to 8,300 BTU/lb) and lignite B (< 6,300 BTU/lb). 

According to Department of Energy (DOE) Energy Information Administration (EIA), the 

demonstrated reserve base of coal in the US approximately 508 billion tons: 2% is anthracite, 

53% is bituminous, 36% is subbituminous, and 9% is lignite [61].  

Coals contain approximately 1 – 2% nitrogen (N), which is called fuel-N, and the amounts of 

fuel-N depend on the rank of the coal. Unlike coals, fuel-N content in biomass can vary widely: 

wood, straw, sawdust, and corn residue contain less than 1%, FB contains 3 – 4%, poultry litter 

biomass contains 1 – 5%, and meat and bone meal contain 9 – 11% on a dry ash free (DAF) 

basis  [13, 16]. Fuel-N is released to the gas phase during coal and biomass combustion and 

could either finally form NO in fuel-lean combustion and N2 in fuel-rich combustion. Also, fuel-

N released from coal and biomass could be in the form of HCN and/or NH3 depending on the 

coal rank and biomass type. Fuel-N release is coupled with the release rate of volatiles [62]. It is 

found that low rank coals with high volatile contents (e.g., Texas lignite) release high amounts of 

NH3 while high rank coals with low volatile contents (e.g., anthracite) release high amounts of 

HCN [63]. It was also found that NO emissions decrease with an increase of the VM amounts in 

the fuels [64]. The release rate of fuel-N is closely related to processes of devolatilization, 

volatile combustion and char combustion. Though the fuel-N plays a fundamental role in the 

formation and reduction of NOx; to the author’s knowledge, there are very little systematic 

studies on the characterization of fuel-N in coal and biomass. 

The physical process occurring during heating, ignition and combustion of isolated particles 

is presented in figure 2.2. When a fuel particle enters the combustion chamber, thermal effects of 

radiation energy from other particles and furnace walls and convection from hot gases propagate 
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into the particle. When the particle temperature reaches pyrolysis level, thermal decomposition 

occurs and the particle starts releasing volatiles. This process is called devolatilization and it 

relies on the heating rate. Lighter VM contained in the coal is released rapidly at lower 

temperatures, and heavier volatiles are released at a slower rate at higher temperatures [65]. The 

amount of fuel-N released depends on the devolatilization characteristics [66]. The release rate 

of fuel-N is assumed to be approximately proportional to the rate of the fuel weight loss. If 

nitrogen is released in a fuel-lean combustion, enough oxygen is available to oxidize fuel-N to 

NO and thus significant NO formation takes place. In contrast, under the fuel-rich environment, 

fuel-N from the coal may be released as HCN, NH3 and N2; but N2 may combine with 

hydrocarbon (HC) fragments to form more HCN. After the ignition, the combustion continues 

until all volatiles are consumed, and then the char combustion occurs by the remaining carbon in 

fuels. The main composition of the last stage of thecombustion is ash. 

 

 
Figure 2.2. Physical processes in ignition and combustion of isolated particles [67]. 

 



www.manaraa.com

 19

2.2 Emissions in Coal-fired Power Plants 

2.2.1 NOx Formations 

Nitrogen oxides (NOx) form during the coal and biomass combustion of hydrocarbons in air 

depending on many parameters such as the type of fuels, the amount of oxygen available and the 

temperature of the flame. Though NOx formation during coal combustion has been well 

established, NOx formation during biomass combustion is still not well understood. The 

chemical and physical principals of NOx formation during coal combustion should also apply to 

biomass combustion. The formation of NOx in coal combustions mainly occurs through three 

reaction mechanisms: thermal NOx (Zeldovich mechanism), prompt NOx (Fenimore mechanism) 

and fuel NOx [68]. 

 

A) Thermal NOx. The most significant NOx formation is by the thermal NOx mechanism. 

The reactions occurring at elevated temperatures higher than 2400°F (1600 K) during 

combustion processes generate both nitrogen and oxygen atoms by dissociation of the respective 

molecules which subsequently lead to the formation of NO [68, 69]. The three main reactions of 

the Zeldovich mechanism are described below [69]: 

 

O + N2 = N + NO          (2.1) 

N + O2 = O + NO          (2.2) 

N + OH = H + NO           (2.3) 

 

NO is formed in both the flame front and the postflame gases [69]. The reaction (2.3) mainly 

takes place in a near stoichiometric and a very rich mixture gas. Although the formation rate of 

thermal NOx is slow compared to combustion reactions, thermal NOx contributes the largest 
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portion to the total NOx formed during coal combustion [70]. For most coal-fired units, thermal 

NOx contributes 25% of the total NOx emission [3]. The quantity of NOx formed depends on 

residence time, local stoichiometric composition (equivalence ratio), turbulence, and especially, 

reaction temperature. 

 

B) Prompt NOx. The prompt NOx is formed directly at the flame front in fuel rich 

environments and provides less than 10% of overall NOx emission [69, 71]. The hydrocarbon 

fragments such as C, C2, CH and CH2 react with the atmosphere nitrogen and their subsequent 

combination to produce nitrogen species such as CN, HCN, H2CN and NH [72]. These nitrogen 

species react with oxygen to form NOx. The reaction mechanisms are [72]: 

 

CH + N2 = HCN +N            (2.4) 

N + O2 = NO + O         (2.5) 

HCN + OH = CN + N2O             (2.6) 

CN + O2 = NO + CO           (2.7) 

 

C) Fuel NOx. For the fuel NOx reaction mechanism, the reaction occurs in the combustion 

process from chemically/bound nitrogen in fuels [73]. The mechanism of fuel NOx formation is 

presented in figure 2.3. This nitrogen evolves from the fuel in the form of HCN, NH3 and NH2, 

and then these compounds oxidize to produce NOx strongly depending on the local 

stoichiometric conditions. Fuel NOx is mainly formed in fuel lean combustions. For most coal-

fired units, fuel NOx contributes 75% of the total NOx emission [3]. 
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Figure 2.3. NOx formation and reduction paths by fuel-N depending on the stoichiometry. 
 

 

2.2.2 Hg Speciation and Measurements 

Mercury (Hg) forms in the flue gas from coal-fired electric utility plants are typically 

classified into three forms: elemental form (Hg0), oxidized form (Hg2+) and particle-bound form 

(Hgp). Mercury speciation generally depends on coal properties, combustion conditions, flue gas 

composition, fly ash composition, and temperatures. Figure 2.4 shows the production paths of 

Hg speciation. Mercury in coals is completely vaporized as elemental form at high temperatures 

during combustion. The vaporized elemental form is released into the atmosphere as Hg0 by the 

direct emission, Hg2+ by the catalytic oxidation and HgCl2 by the chlorination. Fly ash formed 

during the combustion absorbs some gaseous Hg forms to produce particle-bound forms. The 

oxidized forms of Hg include gaseous mercury chloride (HgCl2), mercury oxide (HgO) and 

mercury sulfate (HgSO4) [9]. The majority of the oxidized form formed in the flue gas in coal-

fired electric utility boilers is believed to be HgCl2. Some of the Hg oxidation reactions within 

the gas phase of a combustor are reported as chemical reactions from (2.8) to (2.19) [11, 74]. 

The most important species for Hg oxidation in the post-combustion process is the chlorine-

containing species such as HCl and Cl2. The reaction of Hg with atomic Cl is very fast when 

compared to the other forms of chlorine species. 
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Figure 2.4. Production paths of Hg speciation [75]. 

 

 

OHHgClOHClHg 222
0 2242 +→++    (2.8) 

22
0 HgClClHg →+      (2.9) 

HgClClHg →+0              (2.10) 

2HgClClHgCl →+               (2.11) 

HHgClHClHg +→+0      (2.12) 

OHHgClHOClHg +→+0        (2.13) 

HHgClHClHgCl +→+ 2       (2.14) 

23
0 OHgOOHg +→+             (2.15) 

HgOOHg 22 2
0 →+             (2.16) 

22
0 NHgOONHg +→+                (2.17) 
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NOHgONOHg +→+ 2
0                 (2.18) 

HgONOHg →+0                 (2.19) 

 

 
Figure 2.5. Predicted distributions of Hg species for Pittsburgh coals at equilibrium, as function 

of temperature [10, 75]. 
 

 

Figure 2.5 presents the predicted distribution of Hg species using Pittsburgh coals at 

equilibrium as a function of temperature. All the mercury seems to exist as HgCl2 below 450ºC 

(725 K), and above 700ºC (975 K) is 99% gaseous Hg0 and 1% gaseous HgO. The proportion of 

HgCl2 and Hg0 at temperatures between 450 and 700ºC depends on the chlorine (Cl) 

concentration in coals. It seemed that the heterogeneous reactions were also important for Hg 

oxidation at low temperatures. Thermodynamical estimation showed that all of Hg presented in 

the flue gas over 800°C was in elemental form [76]. It was suggested that homogeneous 

oxidation of Hg0 to Hg2+ occurs between 400 and 700ºC by chemical equilibrium calculations 

[9]. It was reported that the conversion of HgCl2 to Hg0 which was called a back reaction, was 
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achieved 100% over 650°C, and Hg oxidation by HCl probably occurred in the cooling area 

between the furnace exit and the measurement port [77]. There are, however, results in apparent 

contradiction to the equilibrium results. In tests of pilot- and full-scale coal-fired boilers the 

complete Hg oxidation did not take place as predicted by the equilibrium calculations [78]. 

Models employed the simple equilibrium approach did not adequately predict the results of the 

multi-components gas stream containing sulfates [10]. Many experimental results suggests that 

Hg oxidation occurs above temperatures at which equilibrium would predict only Hg0 should 

exist [79, 80]. Hg0 still exists in a flue gas at temperatures even lower than 450°C [8]. 

 

 
Figure 2.6. The Ontario Hydro (OH) method for Hg measurement in the flue gas form coal-fired 

electric utility plants on an online basis [9]. 
 

 

Elemental Hg can be directly measured by laser instruments, but almost all systems hardly 

measure oxidized form directly. To estimate the oxidized mercury, the Ontario Hydro (OH) 

method as shown in figure 2.6 has been commonly adopted. The OH method attempts to 

measure all Hg forms in the flue gas form coal-fired electric utility plants on an online basis. In 

principle, a nozzle and probe are operated isokinetically, a filter collects particulate matter (PM) 
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and chemical solutions in impingers capture gaseous mercury. A strong oxidizing solution like 

potassium permanganate (KMnO4) captures the oxidized mercury while Hg0 passes through the 

solution. The description of other methods such as the EPA Method 29, 101A and 101B, Tris-

Buffer Method and MESA Method are available in Reference [9].  

 

 
Figure 2.7. A Hg measurement method designed by Southern Research Institute (SRI) [81]. 
 

 

A method designed by Southern Research Institute (SRI) which is a modified method of OH 

method is presented in figure 2.7. In principle, two chemical solutions, KCl (potassium chloride) 

and NaOH (sodium hydroxide) solutions, are used for the measurements of Hg0 and another two 

chemical solutions, SnCl2 (stannous chloride) and NaOH (sodium hydroxide) solutions, are used 

for the measurements of total mercury (HgT). The KCl absorbs the oxidized mercury presented 
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in the gas stream and the SnCl2 acts as a reducing agent to reduce Hg2+ to Hg0. The chemical 

reaction between SnCl2 and HgCl2 is presented as Eq. (2.20). NaOH helps in absorbing SO2 and 

other acidic gases, and a chiller removes water vapor. Thus the interference by SO2 and water 

vapor is prevented in measuring Hg with a system based on the absorption of ultraviolet (UV) 

light inside the measurement system. The fresh solutions are continuously provided from each 

large reservoir, and the dirty solutions are stored in each waste reservoir. The concentration of 

oxidized mercury is represented by the measurement difference between HgT and Hg0. 

 

HgSnClHgClSnCl +→+ 422          (2.20) 

 

Another Hg measurement method is using a continuous emission monitoring system 

(CEMS) which is capable of providing a real-time measurement over long time periods while 

Ontario Hydro (OH) method is typically used for the short-term measurement. CEMS is the 

integrated equipment for the determination of a gas or particulate matter (PM) concentration or 

emission rate using pollutant analyzers and a conversion equation, graph, or computer program 

to produce results in units of the applicable emission limitation or standard [82]. The use of Hg 

CEMS in the United States has been limited to research applications, especially the Hg 

measurement from the coal-fired combustion [9]. The prevalent Hg CEMS employ cold-vapor 

atomic absorption spectrometry (CVAAS) or cold-vapor atomic fluorescence spectrometry 

(CVAFS) as a detection technology. Though the accepted techniques such as OH method and Hg 

CEMS have been demonstrated good performances on Hg measurements, they are limited to 

certain applications. Therefore, developments of other technologies or the improvement of the 

existing technologies are still required in the field of Hg measurements. 
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2.3  Control Technologies of NOx Emission 

Techniques of the NOx emission control are classified into two categories: pre-combustion 

controls and post-combustion controls. Pre-combustion controls reduce NOx formation during 

the combustion process, while post-combustion controls reduce NOx after it has been formed. 

Pre-combustion controls include low-NOx burners (LNBs), overfire air (OFA), flue gas 

recirculation (FGR), operational modifications such as changing equivalence ratio (ER), reburn 

process, and co-firing process. Post-combustion controls include selective catalytic reduction 

(SCR) and selective noncatalytic reduction (SNCR). The prevalent applications in combination 

using the existed techniques are LNB with reburning and reburning with OFA. Each technology 

is discussed as the following. 

 

2.3.1 Pre-Combustion Technology 

A) Low-NOx Burners (LNBs). LNBs delay the complete mixing of fuel and air to reduce 

oxygen in the primary combustion zone. Rich combustion causes the decrease of the flame 

temperature, residence time at peak temperatures, and hence the NOx reduction. The lower flame 

temperature is achieved by premixing the fuel with deficient air so that there is no high 

temperature front in the flame. The combustion is staged so that not all of the heat is released in 

the same area thus lowering the high temperature of this zone. The concentration of unburned 

carbon is increased due to the rich combustion. The effectiveness of a LNB depends on several 

factors such as the properties of coals, amounts of volatiles in coals and the size of the furnace. 

LNBs along with OFA are typically chosen over secondary NOx controllers in coal-fired power 

plants. They have been implemented in approximately 75% of all power plants in US. The NOx 

reduction rates by using a LNB range from 40 to 70% [83]. 



www.manaraa.com

 28

 
 
 
 

 
Figure 2.8. (a) Structure of the LNB and (b) Concept of the LNB with OFA [84]. 

 

 

A wide-range pulverized coal LNBs as shown in figure 2.8 was built to reduce NOx emission 

and unburned carbon concentration in fly ash, and it could maintain stable combustion at a load 

of 20% [84]. The pulverized coal was fired with a small amount of air at the burner outlet, and 

then an oxygen deficient zone was quickly generated at the downstream region. The OFA was 

injected from several locations instead of one as with conventional methods. The burner was 

used for bench-and large-scale tests. The results showed that 30% NOx reduction less than 3% 

unburned carbon concentration in fly ash. 
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(B) Overfire Air (OFA). The technology requires the introduction of combustion air to be 

separated into primary and secondary combustion regions to achieve complete burnout and to 

encourage the formation of N2 rather than NOx. OFA is typically used in conjunction with LNBs 

or reburn process. It is typically 20% of the total air flow with an overall excess air level of 15 – 

25% [3]. 

 

(C) Flue Gas Recirculation (FGR). In this technique, a part of the flue gas is re-circulated 

to the furnace. It lowers flame temperature and reduces the oxygen concentration in the furnace 

to reduce NOx formation. Though the heat content of the re-circulated flue gas contributes to 

heat recovery, too much FGR lowers the combustion performance and too little FGR increase 

NOx emissions. 

 

(D) Operational Modifications. The technique is changing certain boiler operational 

parameters to create conditions in the furnace to reduce NOx formation [3]. It includes changing 

equivalence ratio (ER), stoichiometric ratio (SR), burners-out-of-service, low excess air, and 

biased firing. The ER is typically defined as the ratio of the fuel-to-air ratio to the stoichiometric 

fuel-to-air ratio which is an inverse value of the SR. 

 

(E) Reburning. The reburn process which is the technology used in the current study has 

been introduced in the early 1970’s. As shown in figure 1.6, the basic reburn technology uses 

two separated combustion regions: a primary combustion region where the primary fuel is fired, 

and a reburn combustion region where the additional fuel is fired. In the primary combustion 

region, coal or natural gas (NG) is fired under normal to low excess air conditions (or SR = 1.1) 

at between 1200 and 1500ºC and generates 70 to 90% of the total heat. Due to less amounts of 
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the fuel, the level of the NOx is formed about 10% less than the NOx formation in the case with 

100% heat input. In the reburn combustion region using conventional fuels (e.g., NG and coals), 

reburn fuel molecules break down to hydrocarbon (HC) fragments which react atmospheric 

nitrogen to produce HCN and NH3. These HCN and NH3 react with NOx in the slightly rich 

combustion to produce N2. The optimal SR in the reburn combustion region is 0.85 to 0.95 (or 

ER = 1.05 to 1.18) [3] and the typical temperature is between 1200 and 1400ºC. The reburn fuel 

produces 10 to 30% of the total heat, while biomass co-firing in coal-fired units is typically 

limited to 5% of the heat input. OFA is typically used in the downstream of the reburn zone to 

create a burnout zone with SR = 1.15 at between 900 and 1300ºC for complete combustion. NG, 

coal and fuel oil reburn applications are in operation. Recently the US DOE has performed NOx 

reductions in coal-fired boilers by the reburn technology to evaluate its performance and 

economics: coal reburning for cyclone boiler NOx control, gas reburning and low-NOx burners 

on a wall-fired boiler, and micronized coal reburning [3]. The effective parameters on the reburn 

process are temperature, mixing, residence time, fuel type, and reburn stoichiometry. NOx 

reduction increases with low temperature, high degree of mixing, longer residence time, high 

nitrogen fuel, and low oxygen concentration. 

NOx reduction in reburning with OFA using a down-fired pilot-scale (300 kW) combustion 

facility was examined for the effect of metal-containing compounds [28]. The schematic of the 

pilot-scale combustor is shown in figure 2.9. NG was used as the main fuel and the reburn fuel. 

Metal-containing compounds such as sodium carbonate, potassium carbonate, calcium acetate, 

and fly ash were injected with the main fuel or the reburn fuel. It resulted in the reduction of SO2 

and NOx while CO increased, and the co-injection with the main fuel had more effect than with 

the reburn fuel. In the modeling results, the increase in NOx reduction in the reburn area was 

because of the slow oxidation of the reburn fuel in the presence of sodium. 
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Figure 2.9. A schematic of the down-fired pilot-scale (300 kW) combustion facility [28]. 
 

 

There are numerous studies on the reburn technology in the literature [3, 22, 23, 27 – 43, 57, 

85, 86]. In Table 2.1, recently reburn studies are listed in chronicle order, and the important test 

variables and results are summarized. The overview of the literatures indicates the NOx reduction 

efficiency depends on the operating conditions of the reburn process. It strongly depends on the 

primary stoichiometric ratio (SR1 or λ1) and the reburn stoichiometric ratio (SR2 or λ2), the 

reburn fuel type, and the particle size of the reburn fuel. Reburn temperature, oxygen 

concentration (i.e. FGR), heat input, baseline NOx concentration, mixing time, and residence 

time are also important variables to control NOx emissions. Some of the results indicate that 

biomass including cattle manure and wood showed higher potentials in NOx reduction than 

coals. The addition of promoters such as alkali compounds, fly ash and catalysts increases NOx 

reduction efficiencies. The use of the pyrolysis gas from the biomass gasification as a reburn fuel 

is another way to dispose biomass with high NOx reduction. Advance gas reburning (AGR) by 

injecting N-agent, typically NH3 or urea, is one of the effective methods on NOx control. 
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Table 2.1. Summary of reburn experiments. 

Ref. Boiler 
Capacity 

Reburn Fuel 
(Heat Input) 

Fuel Particle Size 
(Reburn Temp.) 

Reburn SR 
(Main SR) 

Residence 
Time 

Max. NOx Reduction 
 (Baseline NOx) 

Conclusion 

[57] 
1995 

38 kW 
+ 

OFA 

Wood 
(10%) 

100% < 1680 μm 
(1700 K) 

 0.85 - 1.05 
(1.15) 0.4 s 60% 

(200 - 500 ppm) 

Wood was used effectively as a 
reburn fuel in a pulverized coal-

fired furnace. 

[29] 
1996 

300 MW 
+ OFA 
& FGR 

NG, oil & coal 
(15 - 20%) 

80% < 44 μm 
(1800 K) 0.9 NA 65% 

(600 ppm) 

A multifuel reburn system was 
installed and successfully 
reduced NOx emissions. 

[30] 
1996 

Electric 
furnace 

+ 
OFA 

CH4, synthetic 
gas & pyrolysis 

gas of coal 

Gas 
(1300 - 1700 K) 

0.65 - 1.15 
(0.65-1.15) 1.2 - 3 s 88% 

(NA) 

Pyrolysis gas was shown to be 
effective as a reburn fuel, and 
the longer residence time, the 

lower NOx emission. 

[31] 
1997 

105 MW 
+ 

OFA & 
AGR 

NG 
(10 - 20%) 

Gas 
(1200 - 1400 K) 0.9 NA 70% 

(0.62 lb/mmBTU) 

Advance gas reburning (AGR) 
by the injection of N-agent with 
NG significantly improved NOx 

reduction as well as the stack 
CO emissions. 

[32] 
1997 

200 kW 
+ 

OFA & 
AGR 

Bituminous 
coals 

(10 - 35%) 

75% < 63 μm 
(1600 K) 

0.83 - 1.0 
(1.0 - 1.18) 

0.12 - 0.84 
s 

65% 
(600 ppm) 

The extent of NOx reduction was 
strongly dependent on the reburn 
SR, and the optimum residence 

time in the reburn zone was 
found to be 0.45 s. 

[33] 
1998 

17 kW 
& 

0.9 MW 

NG 
(7 - 25%) 

Gas 
(800 - 1100 K) 

1.2 
(1.2 - 1.3) NA 60% 

(250 - 2600 ppm) 

The fuel-lean reburning tested 
using laboratory and pilot scale 

boilers was found to be an 
effective way to control NOx. 

[34] 
1998 

265 MW 
+ 

OFA 

Wood 
(15%) 

80% < 800 μm 
(1900 K) 

 < 0.9 
(1.05) 0.3 - 1.2 s 60% 

(~ 1300 ppm) 

Wood was successfully used as a 
reburn fuel on NOx reduction 
using a cyclone fired boiler. 
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Table 2.1. Continued. 

Ref. Boiler 
Capacity 

Reburn Fuel 
(Heat Input) 

Fuel Particle Size 
(Reburn Temp.) 

Reburn SR 
(Main SR) 

Residence 
Time 

Max. NOx Reduction 
 (Baseline NOx) 

Conclusion 

[35] 
1999 

300 kW 
+ OFA 
& AGR 

Biomass, coals, 
CRDF, & 
orimulsion 
(10 - 20%) 

70% < 75 μm 
(1700 K) 

0.88 - 0.99 
(1.1) 0.4 - 0.7 s 91% (AGR) 

(200 - 1300 ppm) 

Advanced gas reburning (AGR) 
by the addition of N-agent with 

promoters greatly increased NOx 
reduction. 

[36] 
2000 

300 kW 
+ 

OFA 

Wood, waste, 
walnut shell, 

& NG 
(10 - 25%) 

55% < 75 μm 
(1700 K) 

0.84 - 0.99 
(1.1) 0.82 s 72% 

(400 - 900 ppm) 

NO reductions by walnut shell 
were as high as results by NG. 
(NG > walnut shell > furniture 

waste > willow wood). 

[28] 
2001 

300 kW 
+ 

OFA 

NG 
(5 - 25%) 

Gas 
(1700 K) 

0.83 - 1.05 
(1.1) 0.82 s 66% 

(600 ppm) 

Reburning with alkali 
compounds was effective in the 

control of NOx emissions. 

[37] 
2002 35 kW 

Switchgrass 
& alfalfa 
(4 - 23%) 

75% < 1000 μm 
(1600 K) 1.05 - 1.4 0.81 s 70% 

(500 ppm) 

Reburning was tested using an 
overall fuel-lean boiler. High N-

containing fuel was used 
successfully as a reburn fuel. 

[22] 
2003 30 kW FB & LB 

(30%) 
70 - 90% < 75 μm 

(1500 K) 
0.91 - 1.0 

(1.05) 1 s 80% 
(600 ppm) 

Feedlot biomass (FB) and litter 
biomass (LB) were successfully 
used for co-firing, reburning and 

gasification processes. 

[38] 
2004 

Kinetic 
model 

NG & CH4 
(10 - 30%) 

Gas 
(900 - 1450 K) 0.51 - 0.99 0.12 s 80% 

(850 - 920 ppm) 

Modeling results were similar to 
experimental results. Injecting 

NH3 into a reburn system 
improved NO reduction. 

[23] 
2004 

600 kW 
+ 

OFA 

Syngas 
(5 - 23%) 

Gas 
(1000 - 1500 K) 

0.95 - 1.3 
(1.1 - 1.4) 1.6 s 46% 

(460 ppm) 

Syngas used in reburning was 
effective on NOx reduction 

though it contained low 
hydrocarbon content. 
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Table 2.1. Continued. 

Ref. Boiler 
Capacity 

Reburn Fuel 
(Heat Input) 

Fuel Particle Size 
(Reburn Temp.) 

Reburn SR 
(Main SR) 

Residence 
Time 

Max. NOx Reduction 
 (Baseline NOx) 

Conclusion 

[39] 
2004 30 kW 

CB, coals, & 
coal:CB blends 

(30%) 

50 - 70% < 100 μm 
(1500 K) 

0.83 - 1.0 
(1.05) 0.4 - 0.9 s 62% 

(600 ppm) 

Cattle biomass (CB) resulted in 
higher NOx reduction than coal, 
and circular jet/flat spray reburn 

nozzles were tested. 

[86] 
2005 

80 kW 
+ 

OFA 

Carboxylic 
salts with C3H8 

(9 - 20%) 

NA 
(1400 K) 

0.86 - 1.03 
(1.05) NA 80% 

(NA) 

Addition of carboxylic salts to 
propane as a reburn fuel 

improved the reburn process. 

[40] 
2005 

30 kW 
+ 

OFA 

Pyrolysis gas of 
sewage sludge, 
sawdust, etc. 

(40%) 

Gas 
(1600 K) 

0.75 - 1.15 
(1.15) 2 s 89% 

(1000 - 1200 mg/m3) 

Pyrolysis gas from biomass 
using as a reburn fuel 

contributed high NOx reduction 
and the net CO2 reduction. 

[41] 
2006 30 kW 

CB, coals, & 
coal:CB blends 

 (30%) 

60 - 90% < 150 μm 
(1500 K) 

0.87 - 1.0 
(1.05) 0.6 - 0.7 s 95% 

(400 ppm) 

Cattle biomass (CB) was used as 
a reburn fuel successfully. NOx 

reduction was significant in fuel-
rich conditions. 

[42] 
2007 

Laminar 
flow 

reactor 

Synthetic gas 
(CH4 + C2H6) 

Gas 
(900 - 1500 K) 0.6 – 2.0 > 0.8 s 50% 

(850 ppm) 

Fuel mixing was effective for 
reburning due to the change in 

local stoichiometry and 
residence time. 

[43] 
2007 

1 MW 
+ LNB 
& OFA 

Coals 
(15 - 25%) 

Micronized 
Dmedian: 11 - 54 μm 

(1600 K) 

0.85 - 0.95 
(1.05) NA 80% 

(775 - 820 ppm) 

Micronized fuels resulted in 
little increase in NOx reduction 
in a tangential fired boiler. The 
optimum position of the reburn 

nozzle was tested. 
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Figure 2.10. NOx reductions using bituminous coals as a function of (a) Primary stoichiometric 
ratio in the conditions of λ2 = 0.92 – 1.04 and (b) Baseline NOx concentration in the conditions 

of λ1 = 1.01 – 1.03 and λ2 = 0.94 [32]. 
 

 

Several bituminous coals were tested for reburning using a 0.2MW pilot-scale furnace over a 

wide range of operation parameters, and the effects of SR1 are presented in figure 2.10 (a). The 

NOx reductions decreased with an increase in SR1 due to the high O2 concentration. This effect is 

similar to the effect of reburn stoichiometric ratio (SR2). In figure 2.10 (b), High NOx reductions 
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were found with the baseline NOx concentrations higher than 300 ppm while about 20% of the 

NOx formation was observed with the baseline NOx of 117 ppm. The results also showed the 

NOx reductions remained constant beyond the baseline NOx of 600 ppm. It indicated the reburn 

technology was very effective for the systems with high NOx reductions. When the oxygen 

concentration in the carrier gas of the reburn fuel decreased from 21% to 12%, NOx reductions 

increased. 

 

 
Figure 2.11. (a) Effects of the residence time in the conditions of baseline NOx = 770 ppm, λ1 = 
1.05, and reburn fuel fraction = 22% at 3% O2 and (b) Effect of the reburn fuel fraction in the 

conditions of AGR-lean combustion, λ1 = 1.05, and residence time = 1.2 s [85]. 
 

 

In figure 2.11, effects of the residence time in the reburn zone and the fraction of the reburn 

fuel are presented using several coals as reburn fuels for conventional and AGR operations in a 

bench-scale down-fired combustor. The use of AGR achieved about 85% NOx reduction and 

10% higher than the results of the conventional operation. The NOx reduction improved about 

5% for the conventional operation and about 14% for the AGR operation with increasing reburn 

residence time. The improvements were comparable between the coal on coal case and the coal 

on gas case. The primary fuel was coal for the coal on coal case and NG for the coal on gas case. 



www.manaraa.com

 37

The reburn fuel fraction was varied from 7 to 28% in the conditions of AGR, λ1 = 1.05, and 

residence time = 1.2 s. The NOx reductions increased with an increase of the reburn fuel fraction 

in AGR-lean combustion as shown in figure 2.11 (b), and some results showed it decreased with 

an increase of the reburn fuel fraction in AGR-rich combustion. It indicated AGR was less 

effective with higher reburn fuel fraction. 

 

 
Figure 2.12. NOx emissions for pure coals and coal:CB blends as a function of the equivalence 

ratio in the reburn zone [41]. 
 

 

Cattle biomass has been proposed to use in coal-fired boiler facilities and were experimented 

as reburn fuel using a bench-scale (30 kW) boiler facility [27]. The reburn process has resulted 

in an US Patent # 6,973,883 [46]. In a previous study, the results of cattle biomass (CB, termed 

as feedlot biomass, FB) as a reburn fuel shown in figure 2.12 indicated that 90 – 95% NOx 

reduction was achieved using a bench-scale boiler [41]. The effects of equivalence ratios (ER or 

φ), fuel injection angles (0° and 45°), blending proportions (pure fuels, 90:10 and 70:30 blends 
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on a mass basis), and oxygen concentrations (vitiated: 12.5% O2 & non-vitiated: 20.9% O2) were 

tested with FB as a reburn fuel. The equivalence ratio (ER) is defined as the inverse value of the 

stoichiometric ratio (SR) which boiler industries prefer to use (SR = 1 / ER). The performance 

was compared with those of Texas Lignite coal (TXLC) as standard reburn fuels. The results are 

presented in figure 2.12. With increased equivalence ratio, the oxygen in the combustion zone is 

depleted quickly. Low levels of oxygen slow down the NOx formation and allow the NOx 

reduction to be dominant in the combustion zone. The significant influence on NOx reduction is 

shown with an increase in ER. To simulate the flue gas recirculation (FGR), nitrogen gas with 

the reburn air was used and it was called the vitiation,. In the vitiation condition, higher NOx 

reduction was achieved. The 45° injection of the reburn fuel showed the significant increase of 

NOx reduction compared to the 0° injection. The 45° upward injection caused the increase of 

mixing time, residence time and gas temperature in the boiler. 

The effects of reburn fuels such as wood, pulverized coal and NG on NOx reduction as a 

function of the SR of the reburn zone are shown in figure 2.13, and the results of wood were 

slightly better than those of NG and coal. It was reported that the use of the flue gas recirculation 

(FGR) system to feed the wood particles increased the potential of the reburn process. The use of 

wood as a reburn fuel in a cyclone-fired boiler also resulted in the good control of NOx 

emissions [34]. The co-firing results of 20% wood and 80% coal by mass showed a strong 

potential for the reduction of the greenhouse gas emissions [21]. It was reported that wood chips 

could be economically hauled up to 60 miles to an energy facility. However, it is difficult to 

maintain the peat power production since the relative low heating value (LHV) of wood chips. It 

was recommended that wood not be fired during a winter time because of the difficulty of the 

firing of the frozen wood. Wood is also an effective renewable fuel for both reburning and co-

firing. 
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Figure 2.13. NOx reductions as a function of stoichiometric ratio (SR) in the reburn zone using 

various reburn fuels [34]. 
 
 
 

 
Figure 2.14. NOx emissions for air-staging with different kinds of biomass (lambda = SR) [17]. 
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Sewage sludge was examined for the effect of co-combustion of biomass on NOx emission 

in pulverized fuel furnaces [17]. A semi-industrial pulverized-coal boiler was designed as a 

vertical cylinder with a top-fired burner and produced a thermal output of 0.5 MW. They found 

that the burner design and operation mode have a great influence on the NOx emissions. The use 

of the biomass reduced NOx emission when air staging and reburning were used. About 300 

mg/m3 or less NOx emissions were obtained with 6% oxygen concentration. Figure 2.14 shows 

the effect of various reburn fuels on NOx emissions. Biomass reburning was tested using wood, 

straw, Miscanthus, and sewage sludge. With the decrease of SR (or lambda) in the reburn zone, 

NOx emissions decreased. SO2 emissions rose since the sludge contained the higher level of 

sulfur than that in coals used. 

 

(F) Co-firing. Among the co-firing studies in biomass combustion [12 – 26], a co-firing 

with CB was proposed where CB was ground, mixed with coal, and then fired in existing 

pulverized coal-fired boiler burner facilities [12]. The test was performed with using bench- and 

large-scale boiler burner facilities. The cattle feedlot biomass (FB) has approximately half the 

heating value of coal, twice the VM of coal, and four times the N content of coal on heat basis. 

The results are presented in figure 2.15. NOx production by the fuel blend near the fuel nozzle 

was higher than the NOx for coal; however, the exhaust emission of NOx was lower in the fuel 

blend than in the coal. Figure 2.15 (b) shows that NOx formation is increased with an increase of 

the O2 concentration in the reburn zone. The results revealed that the blend reduced NOx 

emissions, increased CO emissions and burned more completely than 100% coal in the boiler. 

The reduction of NOx is attributed to the high VM and N content. This new co-firing technology 

has the potential to reduce NOx emissions in coal fired boilers located near cattle feedlots and 

also relieves the cattle industry of the waste material. 
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Figure 2.15. (a) NOx emissions as a function of the axial distance from the fuel nozzle and (b) 

NOx emissions as a function of the excess air in the reburn zone [12]. 
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Figure 2.16. Effects of primary stoichiometric ratios (λ1) and fuels on NOx emissions [16]. 

 
 
 

 
Figure 2.17. Productions of NH3 as a function of the primary stoichiometric ratio and the furnace 

axis: (a) 100% coal combustion and (b) 80:20 coal:LB co-firing [16]. 
 

 

The effects of several co-firing fuels and the primary stoichiometric ratio (SR1 or λ1) on NOx 

emissions were presented in figure 2.16. The fuels blended 20% biomass and 80% bituminous 

coal on a thermal basis. The poultry litter biomass (LB) co-firing presented the highest NOx 
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reduction. The optimal range of SR1 was found to be between 0.7 and 0.9. In fuel-lean 

combustion, NOx emissions increased due to high concentrations of O2 which reacted with N2 to 

form NO while in very fuel-rich combustion (λ1 < 0.7), high productions of NH3 and HCN were 

oxidized to NO in the burnout zone. Figure 2.17 presented the production of NH3 along with the 

furnace axis for both coal and biomass co-firing. The highest production of NH3 was observed at 

λ1 = 0.79 for the coal and λ1 = 0.81 for the coal:LB blend. Results in figures 2.16 and 2.17 

indicated higher concentrations of NH3 increased NOx reductions. 

Pine sawdust which contained 50 – 65% moisture on an as received basis was investigated 

for co-firing using a tangentially-fired pulverized-coal boiler [18]. The boiler facility was 

equipped with roller coal mills, modern LNBs, OFA, electrostatic precipitators (ESPs) and flue 

gas desulphurization (FGD) plants. During the tests, sawdust proportions of 2.5 – 8% (from the 

fuel input) were examined. NOx level and unburned carbon in the fly ash increased when both 

coal and sawdust were simultaneously pulverized by the coal mills and fed into the boiler. The 

increase of NOx and unburned carbon was attributed to larger coal particles sizes and the 

moisture in the wood causing a delay in the ignition of the coal and biomass. For the long-term 

use, the separated grinding and feeding systems for coal and biomass is recommended. 

The use of straw and residual wood with coal in an existing power plant (509 MW) in 

Germany was significantly lowered NOx and SO2 emissions [19]. The addition of 10% straw by 

mass reduced the emissions of NOx and SO2 by approximately 46% and 80%, respectively. The 

results of the residual wood showed lower environmental impacts than those of straw, which 

found 66% NOx reduction and 95% SO2 reduction for the residual wood. These measurements 

were taken after desulphurization and denitrofication treatments were performed. Because of the 

high chlorine content in straw, the HCl emissions were high, and it could affect another chemical 

reaction such as Hg oxidation. 
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2.3.2 Post-Combustion Technology 

(A) Selective Catalytic Reduction (SCR). This technology uses a catalyst in the 

downstream of the furnace along with a reducing agent, usually NH3, to remove NOx to N2 in the 

exhaust gas. The catalyst promotes reactions between NOx and ammonia to form nitrogen and 

water. Since NO is the primary component of NOx emitted from combustion sources, the 

reactions (2.21) and (2.22) are the overall main reactions which occur during the SCR process 

with NH3 [87]. NOx reductions as high as 90% are achievable. Any ammonia emission is called 

ammonia slip. 

 

4NH3 + 6NO → 5N2 + 6H2O    (2.21) 

4NH3 + 4NO + O2 → 4N2 + 6H2O       (2.22) 

 

(B) Selective Non-Catalytic Reduction (SNCR). The SNCR process uses only a reducing 

agent (ammonia or urea) without catalysts. The reducing agent reacts with NOx to form nitrogen 

and water. The SNCR process has lower NOx removal efficiency at relatively higher operating 

temperatures. The capital cost of the SNCR process is lower than the SCR process due to the 

high cost of catalysts. NH3 slip (reducing the effective NO removal) occurs more in SNCR than 

in SCR. 

 



www.manaraa.com

 45

2.4 Hg Emission and Oxidation 

2.4.1 Control Technologies for Hg Emission 

Several techniques can be used to capture or remove mercury from coal-fired power plants; 

electrostatic precipitators (ESP), fabric filters (FF), particle scrubbers, and mechanical collectors. 

For the nationwide distribution of existing PM emission controls used for coal-fired electric 

utility boilers in 1999, ESP is the predominant control device (82.9%) [88]. Fabric filters are 

used on about 13.6% of the coal-fired boilers, particle scrubbers are used for 2%, mechanical 

collectors are used for 0.4%, and control device in combination is used for 1.1%. 

Some fly ashes have an important role in Hg oxidations [9, 89, 90]. Fly ashes from 

bituminous coals showed high Hg oxidations than fly ashes from subbituminous coals and 

lignite, and the oxidation rate depends on the composition of the fly ash, especially the iron 

content, and the constituents of the flue gas, especially HCl or NOx [9]. Also gaseous forms of 

both Hg0 and Hg2+ are adsorbed onto the unburned carbon in fly ash to produce particle-bound 

form (Hgp), and the particle-bound forms are collected by ESP or FF in the downstream of the 

system. Thus the coal-fired electric utility boilers equipped with ESP or FF can achieve high 

efficiency of Hg oxidation or Hg capture. Electrostatic precipitators operate by attaching 

electrically charged particles on to oppositely charged metal plates while FF operates by 

collecting fly ash through porous fabric materials. 

To ensure the high efficiency of Hgp capture, many coal-fired boilers can be equipped the 

PM control device such as ESP or FF with a wet flue gas desulfurization (WFGD) scrubber or a 

particulate matter spray dryer absorber (PM-SDA) system. In the WFGD system, gaseous forms 

of Hg2+ are absorbed in the liquid slurry and react with dissolved sulfides in the flue gas to form 

mercuric sulfide (HgS) which is precipitated as sludge. In the SDA system, the principle is the 

same as the WFGD system except using a fine mist of lime slurry instead of the aqueous slurry. 
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Gaseous mercury can be also removed and captured from the gas stream by the sorbent 

injection (SI) into the exhaust stream. The surface area of the sorbent is the most common 

characteristic properties to capture mercury. Removal of mercury is increased with an increase of 

the pore surface area of the highly porous sorbent [9]. Many studies have been focused on 

carbon and calcium-based sorbents which is not a low-cost product. New classes of Hg sorbents 

are required to improve the removal efficiency and to reduce the operating cost.  

 

 
Figure 2.18. A schematic of an electric utility boiler facility equipped with SCR, ESP (or FF) 

and wet scrubber systems [91].  
 

 

Some recent studies suggest that the operation of selective catalytic reduction (SCR) 

promoted the formation of oxidized mercury forms in coal combustion flue gases [75, 92, 93]. 

Figure 2.18 shows an existing boiler facility equipped with SCR, ESP, FF, or wet scrubber to 

enhance Hg capture. Catalysts such as V2O5 and TiO2 could promote the formation of oxidized 

mercury [93, 94, 95]. The effect of the SCR operation appeared to be dependent on the coal 

properties, the reaction temperature, NH3 concentration and SCR catalyst type, size and age [93, 
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96, 97]. Activated carbon injection is very promising technology in the municipal waste 

combustor industry and is capable of removing more than 90% of Hg in a certain condition [75, 

98]. Carbon or calcium content in fly ash can also increase the Hg oxidation [9, 98]. Bituminous 

coals which include high chlorine (Cl) content showed significant promotion while 

subbituminous coals which include low chlorine showed poor Hg oxidation.  

Another possible method to reduce Hg emission without using the additional post-

combustion emission controls is that reducing the amount of Hg in the coal by the coal cleaning 

process before it is shipped to an electric utility power plant. The coal cleaning is defined as a 

series of processes given to coals to lower SO2 emissions from the utility boiler [9]. The 

conventional physical coal cleaning includes size reduction, size screening and gravity 

separation.  

 

2.4.2 Hg Emission from Boiler Facilities 

Capturing of Hg2+ and Hgp is somewhat easier since Hg2+ is water soluble and likely to be 

absorbed by the fly ash and Hgp is captured by ESP and FF. Therefore, the conversion of Hg0 to 

an oxidized form is a key for reducing Hg emissions. Entrained-flow reactors have been used to 

determine the conversion of Hg0 to Hg2+ [9, 99 – 101]. It is known that the temperature and some 

of flue gas components such as HCl, Cl, Cl2, SO2, SO3, O2, O3, NO, NO2, and H2O have 

significant effect on Hg formations. In Table 2.2, numerous studies on Hg oxidation, reduction 

and capture using boiler facilities are listed in chronicle order [24, 99, 100, 102 – 105], and the 

experimental conditions, important findings and results are presented. The temperature of the 

sampling gas was below 750 K. The literatures indicate that most of chlorine in coals are 

converted into HCl, thus firing high-chlorine fuels reduces Hg emissions. The use of fly ash, 

catalysts and active carbon increases mercury captures and oxidations.  
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Table 2.2. Summary of Hg studies using boilers. 

Ref. System Fuel Type Temperature Range Residence 
Time 

Max. Total 
Hg emission Conclusion 

[102] 
2000 

1.0 MW & 500 MW 
boilers + CVAA 

UK coals 
(Thoresby, 

Welbeck, etc.) 

420 - 720 K 
(sampling gas) NA 11.7 μg/m3 

About 80% of vapor Hg presented in 
oxidized forms, and the Hg retention 
linearly increased with an increase of 

the carbon content in dust. 

[105] 
2000 

16.1 kW NG furnace 
+ CAVV +  

EPA Method 29 

NG with Hg0 & 
HCl injections 

(Hg0 = 53 - 
1390 μg/Nm3) 

1125 - 1345 K 
(furnace) 

300 - 400 K 
(sampling gas) 

1.4 s 13.25 μg/Nm3 

No Hg oxidation was occurred in the 
absence of HCl. About 75% 

oxidation was found in the presence 
of 638 ppm HCl at 1345 K. 

[99] 
2004 

700 MW stream turbine 
+ SCR & scrubber 

Bituminous 
and 

Kentucky coals 

1020 K 
& 

430 K (sampling gas) 
NA 13.53 μg/m3 

For both field and lab tests, Hg in the
 flue gas was well measured by a UV
 spectrometer. About 90% of the HgT

 was found to be oxidized forms. 

[100] 
2004 

160 kW PC fired boiler 
+ entrained flow reactor 

Subbituminous 
Belle Ayr coal 

1310 - 1780 K (boiler) 
420 - 670 K (reactor) 
520 K (sampling gas) 

3 s 
(boiler) 
0 - 7 s 

(reactor) 

11.7 μg/Nm3 

(boiler) 
10.36 μg/Nm3 

(reactor) 

The most significant Hg 
transformations occurred at 420 K. 
About 30% of the HgT oxidized at 
temperatures higher than 400°C. 

[103] 
2005 

100 MW PC boiler 
+ OH method 

+ SCEM & ESP 

Kentucky 
and 

Illinois coals 

430 - 640 K 
(sampling gas) NA 29.78 μg/Nm3 

Chlorine in coals promoted Hg 
oxidations while large amounts of 

sulfur inhibited. About 65 - 80% of 
the HgT was oxidized. 

[24] 
2007 

50 kW entrained flow 
PF combustor 

(ash < 500 μm) 
+ FTIR & CVAA 

Bituminous 
coal, wood, 

chicken manure, 
& olive residue 

1270 - 1570 K 
(combustor) 
370 - 400 K 

(sampling gas) 

2.2 - 2.6 s 4.7 μg/m3 

Higher amount of chicken manure 
containing high Cl caused higher Hg 
oxidation, but calcium might react 
with Cl to suppress Hg oxidation. 

[104] 
2007 

30 kW PC fired boiler 
+ CVAA & 

Wet chemistry 

Dairy biomass,  
Texas lignite 

coal & 
Wyoming coal 

1300 - 1400 K 
(combustor) 
300 - 350 K 

(sampling gas) 

0.6 - 0.7 s 3.1 μg/m3 

The increase in the blending portion 
of biomass increased Hg oxidation. 
About 75% Hg oxidation was found 
in co-firing 80% coal and 20% DB. 
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Figure 2.19. Hg removals in the presence and absence of a SCR system [97]. 

 

 

Figure 2.19 shows Hg removals in the presence and absence of a SCR system with various 

wet flue gas desulfurization (WFGD) systems. It is clear that the use of the SCR system 

increased the Hg removals, and the combination of the SCR and WFGD systems yielded the Hg 

removal nearly 90%. It is also reported that firing bituminous coals is more effective with using 

the SCR system than firing subbituminous or lignite coals. The effect of the SCR operation 

appeared to be dependent on the coal properties, the reaction temperature, NH3 concentration and 

SCR catalyst type, size and age [93, 67]. However, the limitations of using the SCR technology 

still exist; high capital costs, high operation costs, high pressure drop, ammonia slip, and catalyst 

poisoning. 

The measurement of total, elemental and oxidized Hg in the flue gas from a coal-fired boiler 

at 750°C of the thermal converter temperature was performed, and its results are presented in 

figure 2.20 [99]. Initially, 0.8 ppb Hg0 was detected in the carrier gas of the mixture of water 
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vapor and N2 gas. The Hg0 concentration was increased to 1.4 ppb by adding HgCl2, which 

indicated as HgT. About 20% conversion of the HgT was measured by adding certain amounts of 

SO2, NO2, HCl, O2, CO2, and NO. 

 

 
Figure 2.20. Emissions of HgT and Hg0 in the flue gas of a coal-fired boiler [99]. 

 

 

In a previous study during biomass and coals combustion, mercury species were measured in 

a bench-scale boiler facility using blends of biomass and coals as reburn fuels [41]. The primary 

fuel (NG) and several reburn fuels such as TXLC, Wyoming coal (WYC) and blends of TXLC 

and FB were examined. Since FB contains high chlorine content, high oxidation of Hg0 during 

combustion was expected. To measure HgT and Hg0, a modification method of the Ontario 

Hydro (OH) method was applied with chemical solutions (KCl, SnCl2 and NaOH). The oxidized 

mercury was determined by the difference of HgT and Hg0. The mercury content in reburn fuels 

are 0.17 mg per 1 kg of TXLC, 0.14 mg per 1 kg of WYC and 0.06 mg per 1 kg of LAPCFB on 
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an as received basis. Measurement results are presented in figures 2.21 to 2.23 which is plotted 

based on data in Table 6.3 of the Reference [41]. The tests were performed in the presence and 

absence of 400 ppm NOx in the boiler. Figure 2.21 presents the measurements of HgT, figure 

2.22 shows the levels of elemental forms, and figure 2.23 shows the concentrations of oxidized 

forms. Note that emissions of all Hg forms are greater for WYC than TXLC, and the results of 

fuel blends are in the middle. It is because feed rates of reburn fuels were different based on the 

same amount of heat produced. The HgT and Hg0 are least observed when the equivalence ratio 

(ERRBZ) in the reburn combustion region is 1.05. Table 2.3 shows the proportion of oxidized 

mercury in the HgT. Since the high chlorine content in LAPCFB, the productions of the oxidized 

mercury are higher for fuel blends than other reburn fuels. It was also noted that the presence of 

NOx probably reduced the Hg0 due to the reaction (2.23). 

 

22
1 NHgONOHg +→+        (2.23) 

 

Table 2.3. Proportion of oxidized Hg in the HgT [41]. 

Without NOx With 400 ppm NOx 
ERRBZ 

WYC TXLC 80:20 
WYC:LAPCFB WYC TXLC 80:20 

WYC:LAPCFB 

0.95 33.3% 37.5% 57.9% 72% 66.7% 68.8% 

1 21.9% 25% 36.8% 50% 37.5% 52.9% 

1.05 37.5% 42.9% 50% 70.6% 71.4% 64.7% 

1.1 30.3% 20% - 73.9% 22.2% 62.5% 
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Figure 2.21. Measurements of total Hg (plotted based on data in Table 6.3 of the Reference 

[41]): (a) Total Hg without NOx and (b) Total Hg with 400 ppm NOx. 
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Figure 2.22. Measurements of elemental Hg (plotted based on data in Table 6.3 of the Reference 

[41]): (a) Hg0 without NOx and (b) Hg0 with 400 ppm NOx. 
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Figure 2.23. Measurements of oxidized Hg (plotted based on data in Table 6.3 of the Reference 

[41]): (a) Oxidized Hg without NOx and (b) Oxidized Hg with 400 ppm NOx. 
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Mercury oxidation from a operating of a down-fired furnace (16.1 kW) between 860 and 

1170ºC was examined [79], and the data was compared with similar results from other 

literatures. Figure 2.24 presents comparison results of Hg oxidation using data from literatures in 

the neighborhood of 900ºC. The results show Hg oxidation apparently occurs at temperatures 

around 900ºC. It is in apparent contradiction to the equilibrium results that Hg oxidation takes 

place between 450 and 700ºC. The gas compositions are HCl, H2O, CO2, N2, and O2 in the case 

tested by Sliger et al. [79], simulated flue gases in the case tested by Widmer et al. [106], HCl 

and O2 in the case tested by Hall et al. [80]. The effect of gas compositions is significant on Hg 

oxidation. It is suggested that the elementary reaction Hg and HCl is hindered by a very high 

energy barrier and unlikely to be important under practical conditions. The global oxidation of 

Hg by HCl requires high temperatures to be activated. 

 

 
Figure 2.24. Comparison results of Hg oxidation using data from literatures at about 900ºC [79]. 
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2.4.3 Hg Oxidation in Flow Reactors 

Flow reactors have been also extensively tested on Hg oxidation and capture with chlorine 

compounds [8, 77, 80, 81, 89, 92, 94, 106 – 112], and their results are summarized in chronicle 

order in Table 2.4. The literatures indicate that chlorine species such as HCl and Cl2 are very 

effective to oxidize Hg0 while sulfur and moisture inhibit Hg oxidation. The use of fly ash, 

catalysts and active carbon increases mercury captures and oxidations. 

 

 
Figure 2.25. Heterogeneous Hg oxidations using Blacksville fly ash at 180°C: (a) Effect of NO2 

and (b) Effect of NO [89]. 
 

 

Heterogeneous interactions between fly ash and Hg in a simulated flue gas were studied to 

identify the role of fly ash on Hg oxidation, the effect of HCl and SO2 on Hg oxidation, and the 

individual impact of NO and NO2 in the presence of fly ash [89]. The baseline blend consisted of 

CO, CO2, O2, and balance N2. It was reported that HCl, SO2 and NO2 promoted Hg oxidation 

while NO inhibited Hg oxidation between 120 and 180°C, and the results of NO2 and NO are 

presented in figure 2.25. The result of the presence of fly ash was also found critical on Hg 

oxidation. Though the addition of fly ash had critical effects on Hg oxidation, the flue gas 

composition was the most important factor, especially NO2 and HCl. 
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Table 2.4. Summary of Hg studies using flow reactors. 

Ref. System Chlorine 
Species 

Gas 
Composition 

Temperature 
Range 

Residence 
Time 

Max. Hg 
Oxidation Conclusion 

[80] 
1991 

Flow reactor + CVAA 
+ 17 kW propane fired 

flue gas generator 
HCl & Cl2 

O2, NO, NO2, 
NH3, SO2, & 

H2S 
300 - 1170 K 1.5 s 90% 

Hg reacted with Cl2, HCl, NO2, and 
O2. Hg could be oxidized by a number 
of different routes during combustion. 

[77] 
1995 

Flow reactor 
+ CVAA HCl 

O2, N2, SO2 
with soda 

lime 
> 925 K NA 

100% 
backward 
reaction 

Conversions of HgCl2 to Hg0 were 
tested. All of pure HgCl2 were 

converted into Hg0 over 925 K in the 
presence of HCl and O2. 

[107] 
1998 Flow reactor HCl O2, CO2, & 

N2 
750 - 1030 K 0.97 - 1.22 s 88% 

For high temperatures, Hg oxidation 
increased with an increase in 
concentrations of HCl and Cl. 

[106] 
1998 

Flow reactor 
+ EPA method 29 HCl O2, CO2, 

H2O, & N2 
700 - 1150 K 0.7 - 1.16 s 95% 

High Hg conversion resulted in high 
temperatures and the longer residence 

time by the preheating of the gas 
mixture. 

[108] 
2002 

Photoreactor with an 
UV beam HCl 

O2, CO, CO2, 
SO2, SO3, N2, 
H2O, & NOx 

300 - 450 K 2 s 72% 
Photochemical oxidation of Hg with 
253.7 nm radiation was a potential 

means of Hg removal from flue gases. 

[92] 
2002 

Flow reactor 
+ catalyst HCl 

O2, CO2, 
SO2, H2O, 
NOx, & N2 

470 - 670 K SV: 1,000 - 
10,000 h-1 98% 

Some of titanium-vanadium-based 
catalysts were capable of oxidizing 

Hg0 in flue gas. 

[109] 
2002 

Entrained flow reactor 
+ activated carbon HCl O2, NOx, N2, 

SO2, & H2O 370 - 470 K 3 - 4 s 90% 
Hg removals in the presence of the 
active carbon in a fixed-bed reactor 

were achieved over 80%. 
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Table 2.4. Continued. 

Ref. System Chlorine 
Species 

Gas 
Composition 

Temperature 
Range 

Residence 
Time 

Max. Hg 
Oxidation Conclusion 

[110] 
2002 

Flow reactor + 
TiO2 + UV beam 

HCl & 
CH2Cl2 

Dry air, Ar, 
& TiO2 

precursor 
300 - 460 K NA 98% 

Hg oxidation/capture by HCl and TiO2 
particles was significantly increased. 
Interactions between HCl and TiO2 
particles catalytically generated Cl2. 

[89] 
2003 

Flow reactor + 
coal fly ash (> 10 μm) 

+ CVAA 
HCl 

O2, CO, CO2, 
NO, SO2, N2, 
NO2, & H2O 

450 K NA 30% 

Potential catalytic effects of fly ash on 
Hg oxidation at low temperatures were 

tested. NO inhibited Hg oxidation 
while SO2 and NO2 promoted it. 

[94] 
2004 

Flow reactor 
+ SCR HCl 

O2, CO2, NO, 
SO2, H2O, 
NH3, & N2 

< 620 K 
Space 

velocity: 
2600h-1 

97% 
HCl was important for providing the 
source of Cl and titanium-vanadium 
catalysts promoted the Hg oxidation. 

[111] 
2004 

Flow reactor + 
coal fly ash (< 50 μm) HCl & Cl2 

H2, CO, NH3, 
HCN, H2S, 

H2O, COS, & 
Ar 

520 - 1020 K NA 95% 

The ash characteristics had a 
significant impact on Hg speciation. 
Interactions between fly ash and flue 

gas promoted Hg oxidation rates. 

[81] 
2005 

Flow reactor + 
Natural gas burner 

(1000 BTU/h) 
Cl2 

Combustion 
gas < 1000 K 0.8 - 3.0 s 98% 

About 70% of the HgT was oxidized 
by injection Cl2 and Hg0 into the 
burner. Higher quenching rates 

resulted in higher Hg conversions. 

[112] 
2005 

Flow reactor 
+ fly ash + 
UV beam  

HCl N2, O2, CO2, 
H2O, & SO2 

> 700 K 
525 K (ash) 0.6 s 90% 

Transition metal oxides, CuO and 
Fe2O3, in ash exhibited significant 

catalytic activity in Hg oxidation in the 
presence of HCl. 

[8] 
2006 

Flow reactor 
+ SCEM Cl2  

N2, O2, CO, 
CO2, H2O, 
SO2, & NO 

450 - 820 K 6 s 92% 
The addition of H2O, SO2, and NO 

inhibited the homogeneous Hg 
oxidation by Cl2. 
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Figure 2.26. Homogeneous Hg oxidations in the simulated flue gas consisted of N2, O2, CO2, 

H2O, SO2, NO, CO, and Cl2 [8]. 
 

 

Results of homogeneous Hg oxidation in the simulated flue gas consisted of N2, O2, CO2, 

H2O, SO2, NO, CO, and Cl2 at temperatures between 180 and 550°C are presented in figure 2.26 

[8]. The baseline case was the Hg measurement in certain amounts of N2 and O2 mixtures. 

Various components of CO2, SO2, NO, CO, and H2O were added into the gas steam with and 

without Cl2. It was found that H2O, SO2 and NO inhibited homogeneous Hg oxidation by Cl2, 

and the presence of H2O increased inhibitory effect of SO2 and NO. The presence of CO2 and 

CO did not have a significant effect on Hg oxidation. Two new reaction paths were suggested 

based on results of SO2 and NO shown as chemical reactions (2.24) and (2.25). 

 

2222 ClSOClSO →+         (2.24) 

NOClClNO 22 2 →+        (2.25) 
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Reaction mechanisms of homogeneous Hg oxidation by HCl as a primary chlorine-

containing species in the system were investigated [74]. It was found that O2 weakly promoted 

homogeneous Hg oxidation, while H2O strongly inhibited Hg oxidation between 300 and 

1000°C. It was also concluded NO could promote or inhibit Hg oxidation depending on its 

concentration at 922°C.  

It was found that increasing HCl concentrations resulted in increased Hg oxidations, and the 

addition of SO2 resulted in decreased Hg oxidation above 755°C [9]. It was found that 7% Hg 

oxidation with 50 ppmv HCl and increased to 27% Hg oxidation with 200 ppmv HCl while 15% 

Hg oxidation with 200 ppmv HCl and 500 ppmv SO2 was measured. The addition of H2O also 

decreased Hg oxidation. 10% Hg oxidation with 200 ppmv HCl, 500 ppmv SO2 and some H2O 

was reported. 

A previous DOE-NETL project evaluated various catalysts in small, fixed sand-bed reactors 

to demonstrate the long-term effectiveness of those catalysts on the oxidation of Hg0 [93]. Four 

catalysts were tested; a commercial palladium catalyst, commercial titanium-vanadium catalyst, 

tire-derived activated carbon, and active fly ash. It resulted in 68% Hg oxidation by the titanium-

vanadium catalyst and 92% Hg oxidation by the palladium catalyst during the initial tests, 

indicating significant increase in the Hg oxidation; however, the extent of the Hg oxidation 

decreased with time. After 60 days in operation, the Hg oxidation decreased 92 to 60% for the 

palladium catalyst and 68% to 30% for the titanium-vanadium catalyst. Not only the age of the 

catalysts is typically concerned for the decrease of the Hg oxidation, but also a buildup of fly ash 

in the boiler caused the oxidation drop in these cases since the Hg oxidation was restored after 

the cleaning process. 
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2.5 Ash Fouling Problems in Coal-Fired Power Plants 

2.5.1 Classification of Ash Fouling 

The production of fouling differs from industry to industry and depends on many 

experimental parameters; velocity of the gas stream, flue gas compositions, temperatures of the 

flue gas, the geometry and material of heat exchangers (HEXs), and temperatures of the HEXs. 

Mechanisms of the fouling creation are classified into five types; sedimentation fouling, inverse 

solubility fouling, chemical reaction fouling, corrosion product fouling, and combined 

mechanisms [113]. Sedimentation fouling is produced by mineral contents in the cooling water, 

and the velocity of the gas stream is one of the key parameters to produce it on the surface of 

HEXs. Inverse solubility fouling is created by the crystallization of salts in natural water, 

especially calcium sulfates. Chemical reactions of the flue gas are the major cause to make solid 

phase depositions such as coke on the surface of the HEXs. The ash deposition is a type of the 

chemical reaction fouling. Corrosion of the metal surface of HEXs may occur during the 

combustion to produce fouling. The cleaning process of the corrosion product fouling may 

deteriorate the corrosion of the facility and break the surfaces of the facility and the HEXs. 

However, most of the fouling process in power generations typically occurs in combination of 

four mechanisms mentioned above. 

Ash buildup is typically divided into two mechanisms: solidified slag deposition and 

powdered ash deposition. The compositions of the ash deposition depend on the temperature of 

the flue gas in the operating boiler. The solidified slag deposition is formed when the flue gas 

temperature is between 1470 and 1920ºF (about 800 and 1050ºC); contains high content of Fe2O3 

and sulfates and low content of SiO2 and Al2O3. The powdered ash deposition occurs when the 

temperature of the fuel gas is below 1470ºF (800ºC), and contains more than 50% SiO2 and over 

20% Al2O3 [53]. The rates of the ash buildup depend on many factors including the flue gas 
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velocity, the ash composition, the ash particle size, and the flow speed in the HEX. The effect of 

the flow speed in a HEX on the ash deposition was studied elsewhere [53]. The effects of ash 

composition and ash particle size on the growth of ash deposition focusing on sodium sulfate 

were investigated [52]. Unlike the ash buildup in the system during coal combustion, fly ash and 

bottom ash are easy to be removed. Fly ash which consists of light particles is reused as mixing 

with concrete depending on the ash composition. Bottom ash mainly consists of heavier particles 

and is typically buried in lakes. 

In our previous study by Annamalai et al. [25] the fouling studies under co-firing conditions 

for blends of coal and high ash FB (42.7% ash as received) were conducted using a Department 

of Energy – National Energy Technology Laboratory (DOE-NETL) 150 kW (500,000 BTU/h) 

pilot plant facility. It was reported that ash deposition causes greater decrease in heat transfer 

rate due to ash buildup when blending coal and high ash FB than for pure coal under similar heat 

input and operating conditions.  

The mineral analysis of ash for the reburn fuels tested were found to be very important since 

the mineral composition of the ash affected the deposition rate, fusion and melting points, 

corrosion rate, and erosion rate of the HEXs. Higher alkaline oxide contents (CaO, MgO, Na2O, 

and K2O) resulted in a higher probability of fouling due to faster growing oxide layers on HEX 

surfaces [114]. 

 

2.5.2 Removal Techniques of Ash Fouling 

Fouling is a common problem associated with the electric utility power plants burning coals. 

Some periodic processes to remove fouling are strongly required to be installed. For other 

exterior cleaning methods, soot blowing, scraping, sand blasting, hydro-blasting, and rotary 

brushing can be applied for mechanical fouling removals [115]. Water, air or steam can be used 
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as media in sootblowers to remove deposits from the HEX surfaces. A high velocity water jet 

system is very common to clean interior and exterior HEXs. Like some fouling is produced in 

chemical reactions, a chemical cleaning technique can be applied on the fouling removal. For 

example, carbonate deposits can be removed by chlorination. No disassembly of HEXs and other 

equipments are necessary, but it may shorten the life of the HEXs. 

For the interior cleaning techniques, a ball or brush is used to pass through HEXs to remove 

corrosion products. In the techniques, the ball can be recirculated by the fluid in HEXs, and the 

brush can be moved forward and backward by the reversible cooling water system. The feature 

using an oversized sponge rubber ball is utilized at Amertap System, and the feature using a 

plastic brush is utilized at M.A.N. System [113]. 
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3. RESEARCH OBJECTIVES 

 

In this section, purposes of the current research and contributions of this study on areas of fossil 

fuel combustion and emission control are discussed. Detailed works to achieve the current study 

successfully are described. 

 

 

The overall objective of the current study is to develop thermo-chemical energy conversion 

technologies for cattle wastes or cattle biomass (CB) which includes feedlot biomass (FB) and 

dairy biomass (DB) as fuels. The proposed facility for the current energy conversion studies is a 

bench-scale (30 kW or 100,000 BTU/h) Boiler Burner Research Facility at Coal and Biomass 

Energy Laboratory (CBEL) of Mechanical Engineering, Texas A&M University (TAMU). The 

facility can either be operated as coal and biomass co-fired facility or as reburn facility for NOx 

and Hg reduction studies. The overall objective has the following sub-objectives: 1) Determine 

the optimum operating condition of coal-fired boilers for the maximum NOx reduction, 2) 

Evaluate the ash fouling potential on the surface of heat exchangers (HEXs) during the reburn 

studies and 3) Conduct a fundamental study of homogeneous and heterogeneous Hg oxidation 

during coal combustion in order to understand the effect of CB fuels on Hg reduction. The tasks 

performed to accomplish the overall objectives and sub-objectives are summarized as follows: 

 

1. Characterize thermo-physical and chemical properties of reburn fuels by the analysis of 

samples for FB, DB, Texas lignite coal (TXLC), and Wyoming subbituminous coal (WYC), 

and then determine the properties of blend fuels on a mass basis for blends of FB:TXLC, 

blends of DB:TXLC, and blends of FB:DB. 
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2. Estimate the operating conditions in the primary and reburn combustion regions. They 

include flow rates of primary and reburn fuels, flow rates of primary and reburn air, flow 

rates of NH3 and N2, concentrations of O2 in the exhaust gas, and equivalence ratios (ER) in 

primary and reburn combustion regions, etc. 

3. Calculate the minimum amounts of NH3 and reburn fuels required to achieve the best NOx 

reduction. 

4. Investigate the followings on NOx reduction: 

(i) Effects of reburn fuels (FB, DB and coals) 

(ii) Effects of fuel blending (coal:DB, coal:FB and DB:FB)  

(iii) Effects of reburn equivalence ratios (ERRBZ or φRBZ = 0.95 to 1.10) 

(iv) Effects of reburn heat inputs (20 to 30%) 

(v) Effects of oxygen concentrations (12.5 and 20.9%) in the reburn gas 

(vi) Effects of reburn injection parameters: 

(a) Injection configurations (0° lateral and 45° upward) of the reburn fuel  

(b) Cross-sections (circle and oval) of reburn nozzles 

(c) Symmetric and asymmetric configurations 

(vii) Effects of baseline NOx concentrations (125 to 630 ppm) generated by the NH3 

injection in the primary combustion region 

(viii) Effects of the presence and absence of HEXs. (Air and water are used as the coolants 

in three single-pass HEXs.) 

5. Develop a diagnosis method of ash fouling behavior in transient boiler operations and 

conduct the fouling tests to determine overall heat transfer coefficients (OHTCs) using the 

log mean temperature difference (LMTD) method. 
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6. Determine combustor performance as measured by burnt fractions (BF) or combustible 

losses, extent of NOx reduction and flue gas analyses (CO, CO2, SO2, and CxHy). 

7. Conduct bench-scale tests to investigate homogeneous and heterogeneous Hg oxidations 

using a plug flow reactor (PFR) and study effects of the followings on Hg oxidation or 

reduction: 

(i) Effects of various gas species (HCl, NO, O2, and N2) and their reactions 

(ii) Effects of temperatures (25 – 1200ºC) 

(iii) Effects of residence times 

(iv) Effects of a vanadium-tungsten-titanium (V2O5-WO3/TiO2 or VWT) catalyst 

 

The current study can lead to 1) development of the reburn technology with CB as reburn 

fuels for NOx reduction, 2) ash fouling behavior under transient and short-time boiler operations 

and 3) a fundamental understanding of Hg oxidation chemistry with gaseous species and the 

impact of catalyst on Hg reduction. 
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4. EXPERIMENTAL TECHNIQUES 

 

This section presents the details of the reburn boiler burner facility in Coal and Biomass Energy 

Laboratory (CBEL) and the plug flow reactor (PFR) facility in Engines, Emissions, and Energy 

Research Laboratory (E3 Lab) at Texas A&M University (TAMU). Experimental methods, 

procedures, and parametric cases are described. Methods for determining operating conditions 

of the facilities are presented. 

 

 

4.1 Reburn for NOx Reduction and Ash Fouling 

4.1.1 Experimental Facilities 

A schematic of the reburn boiler burner facility in CBEL at TAMU is presented in figure 

4.1 (a). The diagram shows all of the major components of the reburn facility: primary burner, 

solid fuel feeder and hopper with a venturi eductor, gas components, air pre-heater, temperature 

acquisition system, emission analyzer, HEXs, exhaust system with water spray, and ash port. 

Figure 4.1 (b) shows the side view of the boiler burner indicating the primary combustion zone, 

the reburn zone, the post-reburn region, and reburn nozzles. The facility is used to conduct both 

biomass reburning on NOx reduction and ash fouling experiments during reburning. It is a 

bench-scale 30 kW (100,000 BTU/h) boiler burner which can be fired with coals, CB, and blends 

of coal and CB as reburn fuels. The boiler burner consists of a 6 in (15.24 cm) diameter, 72 in 

(182.88 cm) long vertically down-fired combustor. The combustor is made with a steel frame 

containing a 2 in layer of insulation and a 2 in section of refractory. 
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Figure 4.1. A schematic of the experimental setup for reburning: (a) Front view of the small-
scale down-fired boiler burner facility, (b) Side view of the boiler burner, (c) Cross-section of 

the furnace, and (d) Distance between HEXs and temperature measurement ports. 
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The primary air is supplied using an air blower and is preheated to about 120ºC using a pre-

heater. The air is mixed with NG and the premixed gas flows into the primary burner. A propane 

torch is used to ignite the flame of premixed gas, and it preheats the furnace. Along the walls of 

the boiler burner are temperature measurement ports at spaced intervals 6 in (15.24 cm) below 

the reburn zone (RBZ). The gas stream is cooled down by the jet water in the quenching area at 

the bottom of the furnace. The exhaust gas vents out through an exhaust system. In conventional 

operational mode, the primary fuel (natural gas) and air are injected from the top into the 

primary combustion zone in order to generate 70% of the total heat (21 kW or 70,000 BTU/h). 

The reburn fuel (coal:FB mixtures) and air (about 20% of total air) are injected laterally into the 

reburn zone in order to produce 30% of the total heat (9 kW or 30,000 BTU/h). 

Three single-pass HEXs were fabricated and mounted in the boiler. The dimensions of the 

HEXs are 2.7 cm (1.06 in) O.D., 2.1 cm (0.83 in) I.D. and 15.24 cm (6 in) long. Three HEXs 

whose surfaces are clean and dry are laid perpendicular to the downward flow of the hot flue gas 

stream. The HEXs are located below the reburn zone between 31 and 46 cm (or 12 and 18 in), 

between 92 and 107 cm (or 36 and 42 in), and between 122 and 137 cm (or 48 and 54 in), 

respectively. The temperatures of the cold fluid at the inlet and exit of the HEXs and the gas 

temperatures at top and bottom surfaces of the HEXs are monitored. Typically, the temperatures 

of the hot gas stream around the HEXs increase from about 430 to 1150ºC (800 to 2100ºF) 

depending on the location. The cross-section of the furnace with the HEX is presented in figure 

4.1 (c). The inlet and exit temperatures of the HEXs are measured 3 inches from the reactor 

center, at the inner surface of the refractory. The locations of temperature measurement ports 

above and below HEXs are illustrated in figure 4.1 (d). In the past, the usage of water has led to 

difficulties in measuring the temperature difference accurately, particularly in a small scale 

reactor facility; hence air is first used as the HEX cold fluid, and the air flow is typically set to 
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20 SCFH (standard cubic feet per hour) or 9.44 SLPM (standard liters per minutes) based on 

standard ambient temperature and pressure (SATP). After slight modification, water as the cold 

fluids in HEXs could also be used. The water flow is typically set to 1.1 GPM (gallon per 

minutes). Ash samples are collected from four different places for several cases to analyze the 

boiler performance, where are each surface of the HEXs and the ash port at the bottom of the 

furnace. The ash port is filled with water during the operation, and the ash sample collected from 

the ash port is called the bottom ash. 

 

4.1.2 Experimental Procedures 

1. The experiment began with preheating the primary air to 120ºC, and then injecting it into the 

reactor with the primary fuel (NG). The flame was ignited by a propane torch. 

2. The furnace operates at a relatively low temperature, and NH3 is supplied to generate NOx 

was generated with ammonia (NH3). The NH3 was injected with the primary fuel and was 

converted to NOx during combustion. It is important to maintain a fuel-lean condition 

(typically φ = 0.95) for the primary combustion zone for the conversion of all NH3 to NOx. 

3. The temperatures along the reactor axis were then monitored. 

4. For ash fouling studies, the cold fluid flowed into HEXs. Thermocouple probes were kept at 

the center of each HEX. 

5. After the temperature stabilization in the burner, the reburn fuel and carrier gas (air) were 

injected. The temperature of the reburn zone may be near the steady state; however, the 

temperatures near HEXs may not achieve the steady state. 

6. The instantaneous temperatures of the cold fluid and the hot flue gas stream were monitored. 

7. After the reburn temperature reached the steady state condition, the electrochemical sensor-

based gas analyzer was used to determine concentrations of NOx, O2, CO, CO2, SO2, and 
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combustibles (CxHy) at the measurement ports (at 137 cm or 54 in below the reburn nozzles). 

Electrochemical sensors were used to measure 0 – 25% O2, 0 – 8000 ppm CO, 0 – 4000 ppm 

NOx, 0 – 100 ppm NO2, and 0 – 4000 ppm SO2. Nondispersive infrared sensors (NDIR) 

were used to measure 0 – 15% CO, 0 – 20000 ppm CxHy and 0 – 15% CO2.  

8. The duration of reburn tests was limited to 3 to 4 hours due to safety concerns. An entire 

single experiment, including the boiler preheating, the reburn combustion and the boiler 

cooling, lasted 9 to 10 hours.  

9. Once the experiments were completed, the reburn fuel was shut off followed by NG. After 

the furnace completely cooled down, the HEXs were detached from the boiler, and ash 

samples were scraped off from the HEX surfaces and collected from the ash port for the 

analysis. 

 

4.1.3 Operating Conditions 

The bench-scale reburn boiler facility in CBEL at TAMU generates 30 kW (100,000 BTU/h) 

heat. Using the gross or higher heating value (HHV) of each reburn fuel, the flow rates of 

primary and reburn fuels required for the primary and reburn zones are calculated. With the 

ultimate and proximate analyses of the reburn and primary fuels including the heating value, the 

requirements of the primary fuel (CHhNnOoSs) and air (15% humidity) are calculated with the 

addition of NH3 using Eq. (4.1). The operating conditions of the primary combustion zone are 

always the same and listed in Table 4.1. The primary fuel used is NG (mainly CH4) with 40835 

kJ/m3 of HHV. The HHV was found to be 37050 kJ/m3 by the overall empirical chemical 

formula. The conditions of the primary combustion zone are maintained the same for each 

experiment. Equation (4.1) allows the control of NOx emissions with the flow of NH3. The 

baseline NOx concentration created by the combustion of NH3 in the primary combustion zone 
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before the injection of the reburn fuel and air is 420 – 440 ppm. For the NH3 reaction, it is 

important to maintain a fuel-lean combustion or these NH3 probably be slip. 

 

( ) ( )
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Table 4.1. Operating conditions of the primary combustion zone. 
Primary fuel  Natural gas (NG) 

Fuel flow rate 30.1 SLPM (63.9 SCFH) 

Heat input 21 kW or 70,000 BTU/h 

Proportion of heat input 70% 

Equivalence ratio, ERPRI 0.95 

Air flow rate 320.3 SLPM (678.7 SCFH) 

NH3 injection 0.12 SLPM (0.265 SCFH) 

Baseline NOx emission 420 – 440 ppm 
 

 

Table 4.2. Operating conditions of the reburn zone for the base case. 
Reburn fuel TXLC 

Fuel flow rate (depending on the reburn fuel) 36.9 g/min (4.88 lb/hr) 

Heat input 9 kW or 30,000 BTU/h 

Proportion of heat input 30% 

Equivalence ratio, ERRBZ 0.95 – 1.1 

Air flow rate (depending on the reburn fuel) 115 – 136 SLPM (244 – 288 SCFH) 

O2 % or Vitiation 20.9% or No 

HEX No 

Injection Configurations 
Angle: Lateral (0°) 

 Cross-section: Circular nozzles 
Direction: Symmetric 
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With the ultimate and proximate analyses of the reburn fuels, a chemical formula 

(CHhNnOoSs) can be derived, and the requirements of the reburn fuel and air are then calculated 

with Eq. (4.2). The humidity of air was assumed 15%. The operating condition of the base case 

is listed in Table 4.2. The reburn fuel of the base case is TXLC. The equivalence ratio (ER) is 

typically defined as the ratio of the fuel-to-air ratio to the stoichiometric fuel-to-air ratio which is 

an inverse value of the stoichiometric ratio (SR). In real power plants, the ERPRZ in the primary 

combustion zone is typically maintained less than 1.0, and the ERRBZ in the reburn zone is 

generally kept greater than 1.0. For current studies, ERPRZ is maintained at 0.95 to generate 70% 

of the total heat (21 kW or 70,000 BTU/h) in the primary zone, and ERRBZ is varied from 0.95 to 

1.10 to generate 30% of the total heat (9 kW or 30,000 BTU/h) in the reburn zone. Equation 

(4.2) assumes that there is no CxHy and C(s) and provides an estimate for the levels of CO and 

SO2 in the exhaust. The CO estimate may be a little higher than measured values since some 

unburned carbon is in the form of hydrocarbons. The estimate for SO2 may also be high since 

some sulfur reacts to form SO3, and some is left in the ash. These estimates will function as a 

guideline to ensure that the measured results are reasonable.  
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Table 4.3. Experimental cases for the current studies with the baseline NOx of 420 – 440 ppm. 

Reburn Fuel Vitiation ERRBZ HEXs Reburn 
Heat Input 

Injection 
Angle 

Cross-Section 
of Nozzles 

LAPCFB No 0.95 – 1.10 Yes & No 20 – 30% 0° Circle 

HAPCFB No 0.95 – 1.10 Yes 30% 0° Circle 

LASSDB Yes & No 0.95 – 1.10 Yes & No 20 – 30% 0° & 45° 
Asymmetric Circle 

TXLC Yes & No 0.95 – 1.10 Yes & No 30% 0° & 45° Circle 

WYC No 0.95 – 1.10 Yes 30% 0° Circle 

90:10 
TXLC:LAPCFB No 0.95 – 1.10 Yes 30% 0° Circle 

90:10 
TXLC:HAPCFB No 0.95 – 1.10 Yes 30% 0° Circle 

90:10 
TXLC:LASSDB Yes & No 0.95 – 1.10 Yes & No 30% 0° & 45° Circle & Oval 

80:20 
TXLC:LASSDB Yes & No 0.95 – 1.10 Yes & No 30% 0° & 45° Circle & Oval 

70:30 
TXLC:LAPCFB No 0.95 – 1.10 Yes 30% 0° Circle 

70:30 
TXLC:HAPCFB No 0.95 – 1.10 Yes 30% 0° Circle 

70:30 
LASSDB:LAPCFB No 0.95 – 1.10 No 30% 0° Circle 

30:70 
LASSDB:LAPCFB No 0.95 – 1.10 No 30% 0° Circle 

 

 

4.1.4 Experimental Cases 

Table 4.3 lists the experimental cases for the current studies. Various reburn fuels and 

equivalence ratios are studied. Non-vitiation (20.9% O2 in pure air) and vitiation (12.5% O2 in 

pure air) are tested. The conditions with and without HEXs are tested. Various heat inputs (20 to 

30% by reburn fuels) are examined for the pure LAPCFB and LASSDB cases. As shown in 

figure 4.2, various reburn injection configurations are also examined such as lateral (0°) & 45° 
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upward injections, circle & oval cross-section reburn nozzles, and symmetric and asymmetric 

reburn injections. For the oval injection, the longer diameter of the nozzles is normal to the 

furnace axis. A few cases are selected to vary the baseline NOx concentration. The base case uses 

the non-vitiated reburn air (20.9% O2) without HEXs, 30% reburn heat input, 0° injection with 

circular nozzles in the symmetric configuration. 

 

 
 
 
 

 
Figure 4.2. Injection configurations of reburn fuels: (a) Symmetric lateral (0°) injection, (b) 

Symmetric 45° upward injections, (c) Asymmetric 45° upward injection, and (d) Circle and oval 
shapes of the reburn nozzles. 

 

 



www.manaraa.com

 76

4.2 Plug Flow Reactor (PFR) Studies for Hg Oxidation 

4.2.1 Experimental Facilities 

The plug flow reactor (PFR) facility in Engines, Emissions, and Energy Research Laboratory 

(E3 Lab) at Texas A&M University (TAMU) shown in figure 4.3 is composed of four major 

systems: (1) sources of simulated flue gas, (2) a mercury generation system, (3) an electrical 

heating furnace (or flow reactor), and (4) a mercury measuring system. Each of these systems is 

described in the following sub-sections. 

 

 
Figure 4.3. A schematic of the flow reactor facility used for Hg oxidation experiments. 

 

 

A) Sources of Simulated Flue Gas. The unit includes gas cylinders and mass flow 

controllers (MFCs). The volume fraction (or mole fraction) of each gas species in the standard 

gas cylinders were 0.047% HCl, 1.98% NO and 50.2% O2 with N2 balance at the standard 

temperature (25°C) and the ambient pressure (1 atm). The balance nitrogen was an ultra high 

purity N2 with a purity of 99.99%. The pressure of the simulated gas stream in the system was 

near atmospheric pressure. After passing through the MFCs, gas species were preheated to about 
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50 – 60ºC and well-mixed. The simulated gas stream (the mixtures of HCl, NO and O2 with 

balance N2) entered into a long quartz-tube inside the electrical heating furnace. For flowing 

elemental mercury (Hg0), pure N2 was used as the carrier gas for Hg0, which entered into a short 

quartz-tube inside the mercury generation system. 

 

B) Mercury (Hg) Generation System. The mercury generator contained a certified 

permeation tube of Hg0 (VICI Metronics, Inc.). The permeation tube of Hg0 (length = 73 mm) 

was placed in the short quartz-tube (O.D. = 20 mm, I.D. = 16 mm and L = 510 mm) in the 

mercury generator. The total emission rate of Hg0 was about 1750 ng/min ± 35 ng/min (or ± 2%) 

at 100ºC. Flexible electric heating tapes were wrapped around the short quartz-tube. The quartz-

tube was covered by insulation, and sealed into an aluminum box. A temperature controller was 

used to keep the temperature inside the quartz-tube constant. The temperature of the Hg0 carrier 

gas (or pure N2) was measured at each end of the permeation tube. The mercury vapor from the 

Hg generator was mixed with the main gas stream before the entrance to the electrical heating 

furnace. The total flow rate of the simulated flue gas was 1100 SCCM (standard cubic centimeter 

per minute at 25°C and 1 atm). The temperature of the Hg0 carrier gas in the quartz-tube often 

increased or decreased 0.2 or 0.3ºC from one measurement to the next measurement. However, 

this temperature change between two consecutive measurements had a minor effect on the Hg0 

concentration. Most of the ending temperatures of the carrier gas were 1.0ºC higher than the 

beginning temperatures after the three-hour experiment. Also, the initial concentration of Hg0 in 

N2 showed no change up to 1200°C. 

 

C) Plug Flow Reactor (PFR). The simulated gas mixture flowing through the reactor was 

heated to reach the desired temperatures by a three-zone furnace which has an electronic control 
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unit. The initial heating zone (Zone 1) and the final heating zone (Zone 3) are 150 mm long and 

the center zone (Zone 2) is 300 mm long. The electrical energy in the furnace is transferred to a 

reactor (Inconel 600 steel, I.D. = 25.4 mm and L = 1060 mm) for the entire length of the furnace. 

The long quartz-tube (O.D. = 12 mm, I.D. = 6 mm and L = 1220 mm) is located in the center of 

the reactor and supported by clamps and clamps holders. The reactor temperature of each heating 

area could be increased up to a maximum of 1200ºC. The gas temperature was eventually equal 

to the furnace temperature. The temperature at the furnace exit was typically below 500ºC. After 

the gases exit the furnace, they are rapidly cooled to near the ambient temperature, and the 

temperature at the entrance to the mercury analyzer is about 25ºC. The area between the furnace 

exit and the analyzer entrance is called the cooling area in the system. 

 

D) Catalyst. For the heterogeneous Hg reduction or capture, a vanadium-tungsten-titanium 

(V2O5-WO3/TiO2 or VWT) honeycomb monolithic catalyst is placed in the middle of Zone 2 in 

the PFR. The VWT catalyst has specific gravity of 1.8, specific surface area of 1015 m2/m3, pH 

of 5, and the cell size of (1/3) cm × (1/3) cm. Its operating temperature is lower than 430ºC. 

Space velocity is defined as the ratio of the total gas flow rate to the catalyst volume, expressed 

in per hour. At a constant gas flow rate, space velocity is inversely proportional to the catalyst 

volume such that increasing catalyst volume corresponds to decreasing space velocity. More 

details are explained elsewhere [116]. 

 

E) Mercury Measuring System. The concentrations of Hg0 were measured by mercury 

vapor monitor (Mercury Instruments VM-3000) near the ambient temperature. The system was 

capable of continuous monitoring Hg0 in gases like air, nitrogen and argon below the gas 

temperature of 65ºC. A membrane pump inside VM-3000 provided a flow rate of 500 ml/min, 
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and the measurement range was selected up to 1000 μg/m3. The gas stream enters an optical cell 

where ultra violet light of wavelength 253.7 nm passes through and light absorption takes place 

depending on the concentration of the mercury present. The absorption of light at this 

wavelength is a direct indication of mercury concentrations in the flue gas stream which is 

displayed instantaneously at the screen and is recorded at the workstation computer. The 

analyzed gas stream is then vented out with the rest of the total flue gas. 

 

4.2.2 Experiment Procedures 

Initially, the total flow rate of 1100 SCCM (which included balance N2 of 900 SCCM and 

Hg0 carrier N2 of 200 SCCM) flowed into the system at ambient temperature (about 25ºC). The 

main gas stream (900 SCCM) was preheated to about 60ºC. A certain amount of Hg0 from the 

mercury generator mixed with the main gas stream. The initial or baseline concentration of Hg0 

was between 61 and 63 ppb at the reactor temperature of about 25ºC for the homogeneous cases. 

The baseline Hg0 concentration was defined as the Hg0 concentration in the 1100 SCCM pure N2 

at 700ºC (unless otherwise stated). The extent of Hg oxidation is defined as the ratio of the 

removed Hg0 concentration to the supplied Hg0 concentration. The removed concentration is 

obtained by the difference of the supplied and measured concentrations. When gas components 

were added to the main gas stream, the amount of balance N2 was adjusted to keep the total flow 

rate constant. The amount of the mercury carrier gas was fixed at all times. Measurements were 

taken after the concentration of Hg0 stabilized. The stabilization of Hg0 concentrations is 

considered as the fluctuation of the concentration can be ± 5 μg/m3 (about ± 1% of the initial Hg0 

concentration) over 5 minutes. After measurements were recorded, the temperatures of the 

reactor were then increased. The temperatures increased up to 1200ºC for the homogeneous 

cases, and increased up to 400ºC for the heterogeneous cases with the VWT catalyst. To ensure 
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that the permeation rate of Hg0 from the mercury generator did not change during the 

experiment, the temperature of the mercury generator was monitored, and the concentrations of 

Hg0 at the initial and final stages with 1100 SCCM of pure N2 at 700ºC for all experiments were 

measured. Some experiments were repeated at least twice. 

 

Table 4.4. Experiment cases for the mixtures of HCl, NO and O2 in balance N2. 

Phase Test Gas Composition VWT 
Catalyst 

Temperature 
Range 

Residence Time 
at 700ºC 

Case I NO No 700 – 1200ºC 0.16 s 

Case II O2 No 700 – 1200ºC 0.16 s 

Case III NO + O2 No 700 – 1200ºC 0.16 s 

Case IV HCl No 25 – 1200ºC 0.16 s & 0.26 s 

Case V HCl + NO No 25 – 1200ºC 0.16 s 

Case VI HCl + O2 No 25 – 1200ºC 0.16 s & 0.25 s 

H
om

og
en

eo
us

 

Case VII HCl + NO + O2 No 25 – 1200ºC 0.16 s & 0.25 s 

Case VIII HCl Yes 25 – 400ºC 0.25 s 

Case IX HCl + O2 Yes 25 – 400ºC 0.25 s 

H
et

er
o-

ge
ne

ou
s 

Case X HCl + NO + O2 Yes 25 – 400ºC 0.25 s 

 

 

4.2.3 Experimental Cases 

To investigate the effects of gas composition on homogeneous and heterogeneous Hg 

oxidations, several gas compositions consisting of mixtures of HCl, NO and O2 in balance N2 

were tested, and they are listed in Table 4.4. These gas compositions included a single gas 

component (HCl, NO and O2), two-gas components (NO + O2, HCl + O2 and HCl + NO), and 

three-gas components (HCl + NO + O2). The ranges of the reactor temperature were between 25 

and 1200ºC and 700 and 1200ºC. For the heterogeneous Hg reduction, a vanadium-tungsten-
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titanium (V2O5-WO3/TiO2 or VWT) catalyst was placed in the middle of Zone 2 in the PFR. 

Three cases from the homogeneous cases were selected for the heterogeneous tests, and the 

space velocity used in experiments was 70000 h-1. The temperature range was much lower than 

that of the homogeneous cases. The baseline concentration of Hg0 for heterogeneous cases was 

about 50 μg/m3 (or 6 ppb) due to a small piece of the VWT catalyst was used. The conversion 

factor between [ppb] and [μg/m3] was calculated using the ideal gas law with 1 atm and 25ºC. 

In figure 4.4, the temperature distributions of the flue gas in the flow reactor were presented 

resulting from activating heating zones 2 & 3 and activating all three heating zones with the total 

flow rate of 1100 SCCM. The measured temperatures were a little higher at the center area and 

were a little lower at both ends than the set temperature of the reactor. Both the heated length 

and the temperature are important for determining the residence time (RT), and it is expressed in 

Eq. (4.3). Residence times were calculated at temperature of 700ºC as 0.16 s for the cases 

activating heating zones 2 & 3 and 0.25 s activating all three heating zones. The use of a total 

flow rate of 700 SCCM at 700ºC resulted in the residence time of 0.26 s. 

 

T
T

V
ALRT amb
&

=      (4.3) 

 

where A is a cross-section area of the quartz-tube, L is a heating length, V&  is a volume flow rate, 

Tamb is a ambient temperature, and T is a reactor temperature measured. 
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Figure 4.4. Temperature distributions of the simulated gas in the flow reactor: (a) Activating 

heating zones 2 & 3 and (b) Activating all three heating zones [116]. 
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5. METHODOLOGY FOR RESULT ANALYSIS 

 

In order to present and discuss the results, all methodologies used to obtain the results and 

analyses used in deriving other results are described in this section. The fuel analysis includes 

the proximate analysis, ultimate analysis, the fuel particle size analysis, and ash analysis. The 

fuel-N analysis for the fuel, conversion efficiencies and the ash formation analysis for the 

combustion performances are also described. In order to establish limits of accuracy of results, 

uncertainty and repeatability analyses are presented. 

 

 

5.1 Fuel Analysis 

5.1.1 Primary Fuels 

Natural gas (NG) is used as the primary fuel, and its gas compositions are shown in figure 

5.1. The compositions of NG consisted of 94.3% methane (CH4), 1.7% carbon dioxide (CO2), 

2.4% ethane (C2H6), 0.7% nitrogen (N2), 0.5% propane (C3H8) and trace amounts of several 

other gases. Its overall empirical chemical formula is CH3.87N0.0068O0.033 with a higher heating 

value (HHV) of 37050 kJ/m3. For all calculations performed in the current research, the NG 

composition was assumed to be pure CH4 with a heating value of 36340 kJ/m3 indicating that 

actual value is about 2% higher in heating value. These changes have negligible effect on the 

conditions of the primary and reburn combustion such as ERPRZ and ERRBZ, flow rates of the 

primary and reburn air, flow rates of the primary and reburn fuels, and flow rate of NH3. It is 

important to maintain slightly fuel-lean combustion in the main burner to burn NG completely. 

The compositions of NG used during the fouling experiments were different from the NG 

compositions as shown in figure 5.1. The compositions of NG used in ash fouling consisted of 
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94.5% CH4, 1.7% CO2, 2.3% C2H6, 0.5% N2, and 0.6% C3H8. Its chemical formula is 

CH3.84N0.0086O0.032 with a heating value of 37055 kJ/m3.  

 

 
Figure 5.1. Gas compositions of NG used during the reburn experiments. 

 

 

5.1.2 Reburn Fuels 

Various samples of reburn fuels are such as High Ash Partially Composted Feedlot Biomass 

(HAPCFB) composted manure collected with more amounts of soil, Low Ash Partially 

Composted Feedlot Biomass (LAPCFB) composted manure collected with less soil or specially 

paved feedlots, Low Ash Partially Composted Separated Solid Dairy Biomass (LASSDB) which 

solids separated from water flushed dairy manure, Texas Lignite Coal (TXLC), and Wyoming 

Subbituminous Coal (WYC) were collected from feedlots in Amarillo, Texas and analyzed for 

the proximate and ultimate analyses on an as received (as rec.) and dry basis. Three samples of 
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each fuel were analyzed and the average values are listed in Tables 5.1 and 5.2. The reburn fuel 

of the base case is TXLC, and its mixtures with FB or DB are used to compare the results. The 

FB and DB will be more generally called as cattle biomass (CB). The tested reburn fuels are pure 

coals, pure CB and blends of coal:CB on a mass basis. LAPCFB and LASSDB mainly used in 

the current study contain about 2.5 times more fuel-N contents than coals on a dry basis, and 

their samples are presented in figure 5.2. 

 

Table 5.1 Proximate analysis for reburn fuels. 

HAPCFB LAPCFB LASSDB TXLC WYC Proximate 
(%) As 

Rec. Dry As 
Rec. Dry As 

Rec. Dry As 
Rec. Dry As 

Rec. Dry 

Moisture 17.00 0 19.64 0 25.26 0 38.34 0 32.88 0 

Ash 53.85 64.88 16.50 20.53 14.93 19.97 11.46 18.59 5.64 8.40 

Volatile 
Matter 25.79 31.07 52.33 65.11 46.86 62.70 24.79 40.20 28.49 42.45 

Fixed 
Carbon 3.36 4.05 11.54 14.36 12.95 17.33 25.41 41.21 32.99 49.15 

HHV, kJ/kg 
(BTU/lb) 

5207 
(2240) 

6247 
(2685) 

13267 
(5705) 

16507 
(7095) 

12844 
(5522) 

17182 
(7387) 

14289 
(6145) 

23172 
(9960) 

18196 
(7823) 

27114 
(11655) 

 

 

Table 5.2 Ultimate analysis for reburn fuels. 

HAPCFB LAPCFB LASSDB TXLC WYC Ultimate 
(%) As 

Rec. Dry As 
Rec. Dry As 

Rec. Dry As 
Rec. Dry As 

Rec. Dry 

Carbon, C 14.92 17.97 33.79 42.05 35.20 47.09 37.18 60.30 46.52 69.32 

Hydrogen, 
H 1.39 1.68 3.65 4.55 3.12 4.17 2.12 3.44 2.73 4.06 

Nitrogen, N 1.13 1.36 1.97 2.45 1.93 2.58 0.68 1.11 0.66 0.98 

Oxygen, O 11.40 13.73 23.94 29.78 19.15 25.62 9.61 15.58 11.29 16.83 

Sulfur, S 0.31 0.38 0.51 0.64 0.43 0.57 0.61 0.98 0.27 0.41 
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Figure 5.2. Fuel samples used in CB reburning: (a) LAPCFB, (b) LASSDB and (c) TXLC. 
 

 

Estimated values of fuel properties based on the proximate and ultimate analyses and the 

operating conditions are listed in Table 5.3 including the overall empirical chemical formula and 

the ash loadings [kg/GJ] of the reburn fuels. Even though mass based ash content of LAPCFB is 

about three times that of WYC as shown in Table 5.1, the ash content on a heat basis in Table 

5.3 is almost four times that of WYC due to the lower heat value of LAPCFB. The pure 

HAPCFB has the highest ash loading and only limited tests have been conducted due to safety 

concerns. Even though the HHV of as received fuels range from 5207 to 18196 kJ/kg, the HHV 

in kJ per kg of stoichiometric air is approximately same for coals and CB as shown from 3055 to 

3425 kJ/kg which implies that the oxygen consumption will be same when same thermal output 
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is maintained; i.e. the same air flow rate is maintained when switching the fuels and the fuel flow 

is adjusted until similar O2% in exhaust is maintained when operated under slightly fuel-lean 

conditions. 

 

Table 5.3 Fuel properties for reburn fuels on an as received basis. 

 HAPCFB LAPCFB LASSDB TXLC WYC 

HHV, kJ/kg (BTU/lb) 5207 
(2240) 

13267 
(5705) 

12844  
(5520) 

14289 
(6145) 

18196 
(7823) 

HHV in kJ per kg 
Stoich Air, (BTU/lb) 

3055 
(1315) 

3235 
(1390) 

3425 
(1475) 

3115 
(1340) 

3150 
(1355) 

HHV in kJ per kg 
Stoich O2, (BTU/lb) 

13285 
(5710) 

14065 
(6045) 

14845 
(6380) 

13540 
(5820) 

13690 
(5885) 

DAF HHV, kJ/kg 
(BTU/lb) 

17865 
(7680) 

20775 
(8930) 

21474 
(9232) 

28465 
(12240) 

29600 
(12725) 

Ash Loading, kg/GJ 103.42 12.44 11.62 8.02 3.10 

Chemical Formula CH1.11 N0.065 
O0.57 S0.008 

CH1.28 N0.05 
O0.53 S0.006 

CH1.06 N0.05 
O0.41 S0.005 

CH0.68 N0.02 
O0.19 S0.006 

CH0.7 N0.01 
O0.18 S0.002 

 

 

5.1.3 Ash Fusion Temperature (AFT) 

The mineral analysis of ash for the reburn fuels tested are very important since the mineral 

composition of the ash affects the deposition rate, fusion and melting points, corrosion rate, and 

erosion rate of heat exchangers (HEXs). The mineral analysis is presented in Table 5.4. Higher 

alkaline oxide contents (CaO, MgO, Na2O, and K2O) result in a higher probability of fouling due 

to faster growing oxide layers on HEX surfaces [25, 114]. LAPCFB and LASSDB have high 

alkaline contents probably due to the collection of CB from fly ash paved feedlots or concrete 

surfaces. The ash fusion temperature depends upon the ratio of basic oxides to acidic oxides, 

B/A, and it is represented as Eq. (5.1) [26]. The ratios of basic oxides to acidic oxides (B/A) are 

summarized in Table 5.4. The higher the amounts of basic oxides, the lower the ash fusion 

temperature (AFT).  
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Table 5.4 Ash analysis. 

Compositions HAPCFB LAPCFB LASSDB TXLC WYC Melting 
(°C) 

Silicon, SiO2 65.55 20.78 31.36 48.72 31.73 1713 

Aluminum, Al2O3 11.2 4.94 2.89 16.04 17.27 2040 

Titanium, TiO2 0.52 0.22 0.20 0.85 1.35 1830 

Iron, Fe2O3 2.99 1.71 1.62 7.44 4.61 1565 

Calcium, CaO 7.47 21 26.40 11.70 22.20 2299 

Magnesium, MgO 2.29 7.54 7.47 1.93 5.62 2800 

Sodium, Na2O 1.38 5.26 2.28 0.29 1.43 1132 

Potassium, K2O 4.66 14.6 6.90 0.61 0.67 763 

Phosphorus, P2O5 2.43 13.77 6.01 0.1 0.8 300 

Sulfur, SO3 1.3 4.47 4.72 10.80 10.40 17 

Chlorine, Cl 0.41 5.07 0.92 < 0.01 < 0.01 -101 

Carbon dioxide, CO2 0.51 0.59 9.49 0.08 0.37 -57 

Basic/Acidic oxides, 
B/A 0.27 2.46 1.47 0.34 0.7 - 

Note: Values given in percent mass. Ash was calcined at 600°C (1100°F) prior to analysis 

 

2322

522232

TiO  OAl  SiO
OP  OK  ONa  MgO  CaO  OFe

++
+++++

=
A
B      (5.1) 

 

The ash fusion temperatures (AFTs) of reburn fuels are presented for both reducing and 

oxidizing atmospheres in Table 5.5. The values of AFTs are HAPCFB > TXLC and LASSDB > 

LAPCFB > WYC in the reduction condition while they are HAPCFB > TXLC > LASSDB > 

WYC > LAPCFB in the oxidizing condition. In Table 5.4, the values of basic/acidic oxides 

(B/A) is LAPCFB > LASSDB > WYC > TXLC > HAPCFB. Therefore, the AFT results of the 
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oxidizing condition show a good agreement with the results that the higher B/A causes the lower 

AFT. However, the previous results using a DOE-NETL pilot-scale facility indicated the ash 

layer deposited by FB combustion were more difficult to remove than the ash layer deposited by 

coal combustion [25]. Their result seems to indicate that the amounts of ash in reburn fuels 

influence the “fouling behavior” more than the basic ash fusion characteristics. Thicker the ash 

layer, hotter is the outer surface ash temperature and more is “sticking” tendency. 

 

Table 5.5. Ash fusion behavior for reburn fuels. 

Properties HAPCFB LAPCFB LASSDB TXLC WYC 

--  Reducing atmosphere  -- 

Initial deformation temperature, 
IDT, ºF (ºC) 

2177 
(1190) 

2126 
(1165) 

2153 
(1178) 

2111 
(1155) 

2112 
(1156) 

Softening temperature, 
ST, ºF (ºC) 

2222 
(1220) 

2143 
(1170) 

2169 
(1187) 

2150 
(1175) 

2124 
(1162) 

Hemispherical temperature, 
HT, ºF (ºC) 

2286 
(1250) 

2148 
(1175) 

2175 
(1191) 

2181 
(1195) 

2130 
(1166) 

Flow temperature, FT, ºF (ºC) 2380 
(1305) 

2156 
(1180) 

2181 
(1194) 

2190 
(1200) 

2140 
(1171) 

--  Oxidizing atmosphere  -- 

Initial deformation temperature, 
IDT, ºF (ºC) 

2202 
(1205) 

2124 
(1160) 

2190 
(1199) 

2238 
(1225) 

2184 
(1196) 

Softening temperature, 
ST, ºF (ºC) 

2253 
(1235) 

2186 
(1200) 

2198 
(1203) 

2256 
(1235) 

2190 
(1199) 

Hemispherical temperature, 
HT, ºF (ºC) 

2315 
(1270) 

2146 
(1175) 

2201 
(1205) 

2276 
(1245) 

2197 
(1203) 

Flow temperature, FT, ºF (ºC) 2400 
(1315) 

2154 
(1180) 

2206 
(1208) 

2310 
(1265) 

2210 
(1210) 
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5.1.4 Size Distribution of Fuel Particles 

The size analysis of fuel particles is very important because of its significant effect on scale 

of heating, release of volatiles and subsequent reduction of O2 due to oxidation and hence their 

effects on NOx emissions. In general, solid fuels used in utility boilers are about 70% of solid 

fuels having the particle size less than 75 μm (or 200-mesh screen) [117]. The Rosin Rammler 

distribution is widely used to describe the particle size of pulverized solid fuels [48]. The tested 

fuels were as fine as one could get with present available grinders. First, fuel samples of 

HAPCFB, LAPCFB, TXLC, and WYC were analyzed for the FB reburning. Second, fuel 

samples of LASSDB, LAPCFB and TXLC were analyzed for the DB reburning, Fuel samples 

were selected and analyzed in two different time-lines for the FB and DB reburn experiments. 

Results between the same fuels in two different time-lines were observed, and they were 

somewhat different, but relatively similar. 

The distribution of particle sizes for the FB reburn experiments as presented in figure 5.3 

showed that particles smaller than 75 μm were 78% for HAPCFB, 43% for LAPCFB, 38% for 

WYC, and 24% for TXLC by mass. More than 90% of particles for all fuels were smaller than 

300 μm. A large portion of very small particles was found in HAPCFB. It was found that the ash 

tended to make up most of the smaller particles of HAPCFB, and the combustibles were 

contained in larger particles of HAPCFB. Since TXLC, LAPCFB, and WYC contain low ash 

contents, most of the small particles may be presumed to be combustibles. Theoretically, the 

smaller particles would heat faster, release volatiles faster than the larger particles, and hence 

reduce the local O2 concentration. The low O2 concentration slows down NOx formation and 

allows NOx reduction to be dominant. The release rate of volatiles is higher with higher heating 

rates. Thus particle size is one of the important parameter for NOx reduction. 
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Figure 5.3. Particle size distributions of the reburn fuels for the FB reburning. 

 

 

For the FB reburn experiments, mean size by mass and Sauter mean diameter (commonly 

abbreviated as SMD or d32) of fuel particles are presented in Table 5.6. Mean size of reburn fuels 

was about 65 μm for HAPCFB, 112 μm for WYC, 147 μm for LAPCFB, and 156 μm for TXLC. 

HAPCFB had the smallest mean size of particles due the fact that it contained a larger portion of 

small particles made up of mostly ash than other fuels. The SMD is defined as the diameter of a 

sphere that has the same ratio of volume to surface area and used in almost exclusively to 

determine the average diameter of solid fuel particles. It is represented as Eq. (5.2). The SMD of 

reburn fuels was about 33 μm for HAPCFB, 56 μm for LAPCFB, 64 μm for WYC, and 81 μm 

for TXLC. The detailed calculations of the SMD are presented in Appendix A. 
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Table 5.6. Size distributions of fuel particles for the FB reburning. 
Mean Diameter (μm) 

Between Sieves HAPCFB (w%) LAPCFB (w%) TXLC (w%) WYC (w%) 

1596 0.01 0.05 0.01 0.013 

1015 0.03 0.1 0.018 0.021 

570 1.68 7.58 4.97 1.69 

225 6.44 27.21 33.72 15.35 

113 13.73 22.56 37.09 45.02 

60 20.43 16.06 11.82 21.76 

22.5 57.69 26.44 12.38 16.19 

Mean Size by Mass (μm) 65.2 147.2 156.1 111.9 

SMD (μm) 32.7 56.3 81 64.4 
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where di is the diameter of particles and ni is the number of the particles. 

For the DB reburn experiments, fuel samples of LASSDB, LAPCFB and TXLC were 

analyzed, and the results are presented in figure 5.4 and Table 5.7. Particles smaller than 75 μm 

(or 200-mesh screen) were about 49% for LAPCFB, 23% for TXLC and LASSDB by mass. 

More than 75% of particles for all fuels were smaller than 300 μm. LASSDB was coarser than 

LAPCFB. Mean size of reburn fuels was about 242 μm for LASSDB, 150 μm for LAPCFB, and 

167 μm for TXLC. Since LASSDB contained about 22 w% of 570 μm, its mean size was the 

largest. The SMD of reburn fuels was about 89 μm for LASSDB, 50 μm for LAPCFB, and 95 

μm for TXLC. LAPCFB contained about 49 w% particles less than 60 μm, and it made the SMD 

small. 
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Figure 5.4. Particle size distributions of the reburn fuels for the DB reburning. 

 

 

Table 5.7. Size distributions of fuel particles for the DB reburning. 
Mean Diameter (μm)

 Between Sieves LASSDB (w%) LAPCFB (w%) TXLC (w%) 

1596 0.260 0.108 0.015 

1015 0.841 0.263 0.02 

570 21.815 10.367 5.595 

225 31.451 21.557 37.986 

113 22.880 19.091 34.204 

60 9.602 15.912 14.857 

22.5 13.110 32.680 7.320 

Mean Size by Mass (μm) 242.2 150.4 166.8 

SMD (μm) 88.8 50 94.7 
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5.1.5 Characteristics of Oxidation and Pyrolysis 

Pyrolysis and oxidation of reburn fuels were characterized by Thermogravimetric Analysis 

(TGA). Five ranges of the particle size were selected as Dp ≤ 45, 45 ≤ Dp ≤ 75, 75 ≤ Dp ≤ 150, 

150 ≤ Dp ≤ 300, and 300 ≤ Dp ≤ 840 μm. Air was used as a main purge gas for the oxidation, and 

N2 was used for some cases for the pyrolysis. Once air was used for the oxidation, the fuel 

sample first dried at 120ºC for 10 minutes and then heated at 950ºC for 15 minutes. Then it was 

cooled down to 575ºC, and the temperature was kept at 575ºC until the weight change was less 

than 0.3 mg/h. These procedures were selected based on the procedures of ASTM standards: 

ASTM E-872 and D-3175 for the estimation of the amount of VM and E-1755 for the estimation 

of the amount of ash. The release rate of volatiles is typically higher with higher heating rates. 

The average heating rate was 190ºC/min for the oxidation because the function “Equilibriate” 

was selected in a TGA operating program to increase the temperature as fast as possible, It was 

much lower than the actual heating rate when the fuel was injected into the reburn zone (about 

1100ºC/s). For the pyrolysis using N2, the fuel sample first dried at 120ºC for 10 minutes and 

then heated at 575ºC until the weight change was less than 0.3 mg/h. The average heating rate 

was 120ºC/min for the pyrolysis.  

The oxidation results for LASSDB as a function of time and temperature on an as received 

basis are presented in figure 5.5. It is clear that there exit five distinct regions (I – V): Region I is 

for a moisture loss, Region II is for complete drying and heating to the oxidation (or pyrolysis) 

temperature, Region III is for a rapid release of volatiles (major amounts), Region IV is for a 

release of volatiles (minor amounts) and fixed carbon, and Region V is an ash portion. The 

moisture loss (Region I) was about 10% of the total weight for all particle sizes, and the amount 

of volatiles (Region III) released during the oxidation was about 30 to 55% of the total weight. 

For the better comparison, Regions III, IV and V are plotted on a dry basis in the next paragraph. 



www.manaraa.com

 95

 
 
 
 

 
Figure 5.5. Oxidation results for various particle sizes of LASSDB using air on an as received 

basis: (a) Results as a function of time and (b) Results as a function of temperature. 
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Figure 5.6. Oxidation results for various particle sizes of LASSDB using air on a dry basis: (a) 

Results as a function of time and (b) Results as a function of temperature. 
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Figure 5.6 presents the oxidation results for LASSDB on a dry basis. The major amounts of 

volatiles were released within one minute in Region III. Then, the remaining volatiles (minor 

amounts) and fixed carbon were released within two minutes in Region IV. Higher portions of 

ash were found in smaller particles. This result is consistent with the result reported by Rico, et 

al. [118], that is, the particles of ash are smaller than the particles of VM. It is interesting that the 

larger particles release volatiles more, slightly earlier and at lower temperature than the smaller 

particles. These phenomena can be explained by the heating rates and the particle structure in the 

testing pan. The heating rates were higher for the larger particles which increased the release rate 

of the VM. Because of the way the fuel sample was heated using the Equilibriate function in the 

TGA instrument, the heating rate was varied case by case. The heating rates and the release rates 

of the VM in Region III in figure 5.6 (a) were estimated and presented in Table 5.8. The 

structures of fuel particles in the testing pan are shown in figure 5.7. The pan filled with larger 

particles is more porous than the pan filled with smaller particles. More spaces are available for 

the larger particles, and thus the larger particles in the middle or bottom areas are heated faster at 

the same temperature. Ignition temperatures of several fuels were reported in Reference [119]. 

The ignition temperature was determined by the difference of the results of fuel oxidation and 

pyrolysis. The ignition temperature of LASSDB was found to be 250ºC. 

 

Table 5.8. Heating rates and the release rates of the VM in Region III. 
Particle Size (μm) Heating Rate (ºC/min) Release Rate of VM (w%/min) 

Dp ≤ 45 181.7 21.4 

45 ≤ Dp ≤ 75 182.4 24.8 

75 ≤ Dp ≤ 150 182.8 28.4 

150 ≤ Dp ≤ 300 184.1 31.9 

300 ≤ Dp ≤ 840 184.7 35.9 
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Figure 5.7. Structures of fuel particles in the testing pan. 

 

 

Figure 5.8 presents oxidation results for TXLC on a dry basis. Similar regions and results 

were observed for TXLC. Though it is not clear to distinguish Regions III and IV, it can be seen 

that the amounts of volatiles released from TXLC are less than those from LASSDB, and the 

amounts of fixed carbons released from TXLC are more than those from LASSDB. It is 

consistent with the proximate analysis in Table 5.1. The release rates of the VM are lower than 

those for LASSDB. The ignition temperature of TXLC was 270ºC as reported in Reference [119] 

which was slightly higher than that of LASSDB. The ignition temperatures of reburn fuels were 

not determined in the current study because the oxidation and pyrolysis were conducted in 

different heating conditions. 

Pyrolysis results for LASSDB, LAPCFB and TXLC on an as received basis are presented in 

figure 5.9. The results of LASSDB and LAPCFB are very similar each other. Both CBs released 

more amounts of the VM than TXLC. The release rates of both CBs were much faster than that 

of TXLC, and they are much smaller for the pyrolysis than the oxidation because of the heating 

rate. The pyrolysis stated at 240ºC for both LASSDB and LAPCFB and at 300ºC for TXLC. 

Pyrolysis temperatures of several fuels were also reported in References [60, 119]. The 

comparison of the ignition and pyrolysis temperatures shows that the particles of LASSDB were 

ignited during pyrolysis while the particles of TXLC were ignited before pyrolysis. 
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Figure 5.8. Oxidation results for various particle sizes of TXLC using air on a dry basis: (a) 

Results as a function of time and (b) Results as a function of temperature. 
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Figure 5.9. Pyrolysis results for various particle sizes of LASSDB using N2 on an as received 

basis: (a) Results as a function of time and (b) Results as a function of temperature. 
 

 



www.manaraa.com

 101

5.2 Fuel-Nitrogen (N) Analysis 

Nitrogen species, HCN and NH3 derived from fuel-N during combustion, are the main 

sources for the NOx formation and reduction in homogeneous gas-phase reaction. The fuel-N 

mainly transforms to N2 and NOx during pyrolysis and devolatilization. It was found HCN was a 

main precursor for N2O [120, 121]. Thus NH3 was used as a main precursor for NOx reduction in 

the current study as presented in Eq. (5.3). 

 

OHNNONH 223 5.125.15.1 +→+           (5.3) 

 

Assuming that fuel-N releases NH3, then it is very useful to estimate amounts of NH3 and hence 

fuel-N required to reduce certain amounts of NOx. A methodology of fuel-N analysis is briefly 

presented in this section and detailed presented in Appendix B. The analysis was performed 

based on the presumption that the sufficient fuel-N in the reburn fuels produced the necessary 

amount of NH3 needed for 90% NOx reduction. The assumptions required for the analysis are as 

follows (1) The fuel-N in biomass convert to 60% NH3, 30% HCN and 10% N2 on a mass basis, 

and (2) The fuel-N in coals convert to 30% NH3, 60% HCN and 10% N2 on a mass basis. For the 

analysis, Eq. (5.4) was used. The heat generated by the reburn fuels was considered as 30% (9 

kW or 30,000 BTU/h) of the total heat. The fuel properties in Tables 5.1 and 5.2 and chemical 

forms listed as CcHhNnOoSs in Table 5.3 were used for the analysis. The blends of coal:biomass 

were determined by the combination of the fuel properties on a mass basis. The NOx reduction in 

mole/s by reburning is calculated using Eq. (5.5). 

 

( ) 22222222 eNdOcSOObHCONBOHAOaSONCH sonh ++++→⋅+⋅++  (5.4) 
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exitNOxexitdryPRZNOxPRZdryreducedNOx xNxNN ,,,,, ×−×= &&&            (5.5) 

 

where PRZdryN ,
&  and exitdryN ,

&  are mole flow rates on a dry basis in the primary zone and at the 

furnace exit, respectively, and xNOx,pri and xNOx,exit are mole fractions of NOx measured before 

reburning and after reburning, respectively. The combustion efficiency, ηcomb, should also be 

considered for the reburn combustion to make sure that all fuels are burnt. The minimum amount 

of NH3 used for the NOx reduction is calculated using Eq. (5.3). The reburn fuels contain N% 

nitrogen, M% moisture and A% ash on a DAF mass basis. The mole flow rate of the fuel-N in 

the reburn zone (RBZ) is 

 

kNN usedNHNDAF /,%, 3
&& =     (5.6) 

 

where %,NDAFN&  is the mole flow rate on a dry ash free (DAF) basis, usedNHN ,3
& is the mole flow 

rate used for 90% NOx reduction, and k is the amounts of NH3 converted from the fuel-N. 

Finally, the minimum amounts of the reburn fuels required for 90% NOx reduction are obtained, 

depending on the reburn fuels, and then the flow rate used in the experiments must exceed the 

minimum required. 
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5.3 NOx Emission Analysis 

For the measurement of NOx emissions, the O2 concentration should be analyzed at the same 

point and time as NOx is analyzed and analyzed on the same basis (wet or dry). The NOx 

concentration must be reported at standard or reference O2 concentration. The representation of 

NOx emissions at the exhaust based on a 3% O2 concentration (which is called a reference O2) is 

suggested by EPA standards while some European studies use 6% O2. For gas turbines, the 

standard O2 concentration is 15%. The conversion formula for the corrected NOx concentration 

at 3% O2 is represented as [122]: 
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×=    (5.7) 

 

where [NOx]meas is the measured NOx concentration in [ppm], O2,amb is the ambient O2 

concentration (20.9%), O2,ref is the reference O2 concentration (3%), and O2,meas is the measured 

O2 concentration.  

The dilution effect of the reburn air is significant on the measurement of NOx emission in 

[ppm], thus it should be accounted in further discussion. The emissions of NOx and SO2 on a 

heat basis are described as below [12]: 
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where the C fraction is a mass fraction of carbon in as received fuels, HHV is a higher heating 

value of the as received fuels, and x is a mole fraction. Note that (1) C fraction and HHV for the 

current study are the combination values of those in the primary and reburn fuels, and (2) a 

molecular weight of 46.01 is used for NOx since all NO is eventually converted into NO2 in the 

atmosphere. In Eq. (5.8) and (5.9), the amount of CO is neglected, otherwise COCO xx +
2

 is used 

instead of 
2COx . The similar concentrations in [ppm] measured from two different cases can be 

converted to different values in g/GJ because concentrations of CO and CO2 are different case by 

case. 

The equivalence ratio (φ) was first calculated by measuring the air flows and average feed 

rate of fuel. This was further checked by gas analysis. The verification was performed for lean (φ 

< 1.0) and stochiometric (φ = 1.0) conditions based on the assumption of complete combustion. 

For lean combustion, it can be shown as 
2

76.41 OX−≈φ  where XO2 is the mole fraction of 

oxygen in flue gas. 
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5.4 Heat Exchanger (HEX) Analysis 

A brief overview of relevant heat transfer analysis for HEXs is presented. In the current 

setup, the entrance and exit temperatures of the hot flue gases and cold fluids are important and 

typically mentioned. Defining the overall heat transfer rate as,  

 

LMTUAQ Δ=&        (5.10) 
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where U is an overall heat transfer coefficient (OHTC), A is a surface area of the HEX, ΔTLM is a 

log mean temperature difference (LMTD), F is a correction factor used for the cross-flow HEX 

system, and ΔT1 and ΔT2 are the local temperature differences. The local temperatures are 

presented in figure 5.10, and the local temperature differences are defined as 
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Figure 5.10. A sketch of local temperatures around the HEX. 
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If the temperature change of one fluid (e.g. hot flue gas) is negligible, then the correction factor, 

F is 1. The determination of F is explained elsewhere [123]. The hot fluid is the flue gas stream 

as generated by the current facility, and the cold fluid used in the study is air or water. The 

energy balance around the HEX yields the heat transfer rate as 

 

)( ,,, exithotinhotgaspgashot TTcmQ −= &&        (5.13) 

)( ,,, incoldexitcoldcoldpcoldcold TTcmQ −= &&            (5.14) 

 

where m& is a mass flow rate (kg/s) and cp is a specific heat (J/kg·K) which depends on the 

average temperatures at the entrance and exit of hot and cold fluids. If the reactor is well 

insulated and no radiation takes place, then the heat transfer rates of Eq. (5.13) and (5.14) are the 

same ( hotQ&  = coldQ&  = Q& ). If the temperature difference (ΔT = Tcold,exit - Tcold,in) of the cold fluid 

increases, the heat transfer to the HEX also increases. The overall heat transfer coefficient 

(OHTC or U) [W/m2·K] is now expressed as 
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          (5.15) 

 

Governing equations from (5.10) to (5.15) are used in the heat exchanger analysis based on 

one-dimensional, steady-state conditions without ash depositions. Typical values and ranges of 

OHTC (U) in the steady-state condition without the fouling behavior based on types of hot and 

cold fluids are listed in Table 5.9. The typical range for the gas-to-gas HEX case is 5 to 50 

W/m2·K and for the gas-to-liquid HEX case is 10 to 100 W/m2·K. With the growth of ash 
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depositions, thermal resistance which relies on the ash composition and particle size increases, 

and the OHTC causes the exit temperature of the cold fluid in the HEX to decrease. Equation 

(5.15) does not account for any “in situ” heat generation due to the oxidation of combustibles in 

ash deposited over the HEX. 

 

Table 5.9. Typical values of OHTC (U) for HEXs [124]. 

Configuration Typical Value of 
U [W/(m2·K)] 

Typical Range of 
U [W/(m2·K)] 

Gas-to-gas HEX at normal pressure 20 5 – 50 

Gas-to-gas HEX at high pressure 200 50 – 500 

Liquid-to-gas or gas-to-liquid HEX 50 10 – 100 

Liquid-to-liquid tubular HEX 1000 200 – 2000 

Liquid-to-liquid plate HEX 2500 500 – 5000 

Condenser, to a gas 50 10 – 100 

Condenser, to a liquid 3000 500 – 6000 

Vaporiser, to a gas 50 10 – 100 

Vaporiser, to a liquid 5000 500 – 10000 

Vaporiser, to a condensing gas 3000 600 – 6000 
 

 

Heat transfer from a hot fluid flow to a cold water/steam circulated through HEXs is 

performed by conduction through the wall of HEXs. Wall thickness and its thermal conductivity 

are very important to evaluate the efficiency of HEXs. Hence, the growth of ash fouling affects 

the heat transfer. The layer of ash is treated as another conduction resistance material in series 

with the wall as shown in figure 5.11.  
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Figure 5.11. An equivalent thermal circuit for the HEX analysis. 
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where Rtotal is a total thermal resistance, h is a convective heat transfer coefficient, A is a surface 

area, t is a thickness, and λ is a thermal conductivity. As tash increases, Rtotal increases, and hence 

U decreases. As cold fluid is changed (e.g., air to water), hi will change affecting U if 1/hiAi is a 

dominant term in Rtotal. 

Ash deposition causes heat transfer rate to decrease with time and are more severe for the 

combustion with high ash fuels. Radiation also takes place in pulverized coal-fired boilers, and 

measurements of the emission properties of ash and deposits have been performed using bench-, 

pilot- and full-scale combustion systems [125, 126]. Ash deposits from western U.S. coals 

reflected up to 70% of incident radiation, and most eastern U.S. coals showed emissivity of 0.7 

to 0.9 [125]. Emissivity and reflectivity of ash was primarily functions of particle size and 

composition of ash [126]. Equation (5.12) indirectly accounts for radiation since Thot,exit will be 

lower when there is more radiations loss. 
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The current bench-scale facility was operated under the transient condition and short-time 

operation with the ash deposition. The transient condition is defined as the condition in which all 

temperatures of the cold fluid and the hot flue gas stream increase as a function of time. Thus, 

Texit, Tin and ΔTLM are functions of time. In order to obtain the OHTC, temperatures of the cold 

fluid and the hot flue gas stream are monitored as a function of time, and the LMTD method is 

employed. Thus during the growth of the ash deposition on HEX surfaces, OHTCs and LMTDs 

of HEXs are determined as a function of time. The thickness of the ash deposition increases with 

time, so that the decrease of OHTC is typically expected under the steady-state condition. 

However, in the transient condition such as the current testing boiler burner, similar result may 

not be expected. Since temperatures of the hot gas stream keep increasing during the 

combustion, the heat transfer rate to the HEXs may increase with time. Hence results are 

interpreted using the results of actual temperature distributions of solid fuel combustion (ash 

deposition cases) and comparing distribution with reference distribution for NG combustion 

(ashless cases). Thus, the results of actual temperature distributions are used as a basis for 

evaluating the effect of presence of ash and deposition of ash from solid reburn fuels. 
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5.5 Ash Analysis 

Loss on ignition (LOI) is a widely used method to estimate the carbon content of ash. 

Organic matter is oxidized to CO2 and ash at 500 – 550ºC, and carbon remains at 900 – 1000ºC. 

LOI is typically obtained by the weight loss during the process by weighing the samples before 

and after heating. In the current study, the combustible loss which is defined as the ratio of 

unburnt combustibles in the ash to initial combustibles in the fuel is estimated instead of carbon 

contents. In order to determine the combustible loss of the current boiler facility, ash samples 

were collected from four locations: from surfaces of the top, middle, and bottom HEXs and from 

the ash port at the bottom of the furnace. The ash port was filled with water due to the water 

quenching system. All ash samples were dried in the lab and sent for analysis. The contents of 

moisture and combustible matter in the ash samples were measured. The measurement of the 

moisture content was performed by overnight drying at 105ºC to constant weight. For the 

measurement of the combustible matter, ash samples were placed in a 950ºC oven for 15 minutes 

and removed (adopted from ASTM E-872 and D-3175), and then heated in an oven at 575ºC 

overnight to a constant weight (adopted from ASTM E-1755). 

The combustible loss can be expressed as [48] 
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where BF is a burnt fraction, mF,0 is the initial mass of combustible in the dry solid fuel, mF is the 

final mass of combustilbe in the dry solid fuel, A0 denotes the initial ash fraction on a dry basis, 

A represents the ash fraction in a dry sample after combustion, mA,0 is the initial mass of ash in 

the dry solid fuel, mA is the final mass of ash in the dry solid fuel. The burnt fraction (BF) which 

is defined as the ratio of combustibles burnt to combustibles injected in the burner. 

The prediction of the ash concentration [kg/m3] on the surface of HEXs is briefly discussed 

in this section. The detailed description is presented in Appendix C. The ash concentration is 

defined as the amount of ash in the unit volume of the gas stream. With the assumptions of 1) 

complete release of ash from fuel and 2) the complete combustion with CO2, O2, H2O, and 

mainly N2, the ash concentration, Cash can be expressed as 
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where ashm&  is a mass flow rate of the ash in the total gas stream, gasV&  is the volume flow rate of 

the gas in the total gas stream, Fuelm&  is a mass flow rate of the total fuel, and Yash,Fuel is an ash 

fraction of the total fuel. Because the density of the gas stream is in inverse proportion to the gas 

temperature, the ash concentration increases with a decrease in the gas temperature. Therefore 

more ash deposition is likely on the surface of the HEX in the lower section of the combustor 

than in the upper section. Further the particles are mostly ash near the bottom HEX compared to 

the top HEX. Since fuel mass firing rate is higher for low “BTU” fuels, Eq. (5.22) reveals the 

increased ash concentration for low BTU fuels even under similar fuel ash contents. 

 



www.manaraa.com

 112

5.6 Uncertainty and Repeatability Analyses 

The following conditions of uncertainty existed during the reburn experiments. First, the 

refractory in the boiler could have been offset from the reactor center. Second, the refractory 

wall could have been thicker than the original thickness because of the accumulation of the ash 

fouling from previous experiments. Third, thermocouple probes could have been covered by ash 

particles which can lead lower readings of temperatures. Fourth, thermocouple probes may not 

have been located at the center of the HEX due to gravitational deflection. Fifth, the reburn 

feeding system made an unstable feed rate though the feed rate was calibrated for each fuel 

before experimentation. The solid fuel was fed to the system with a volumetric feeder. The 

fluctuation of the feed rate is caused by the density of the reburn fuel. Sixth, some of flow meters 

showed fluctuations during the operation. 

 

Table 5.10. Uncertainty for reburn experiments. 
Uncertainty Factor Uncertainty of Each Factor (%) 

Primary Air Flow Meter ± 0.31 

Ammonia Flow Meter ± 0.50 

NG Digital Flow Meter ± 0.66 

RB Motive Air Flow Meter ± 0.83 

RB Aspirated Air Flow Meter ± 0.71 

Cold Fluid Flow Meter for HEX ± 0.91 

Data Measurement ± 5.00 
 

 

For the determination of the overall system uncertainty, possible error ranges of instruments 

and measurements were considered. During the tests, the error ranges of flow meters were 

observed and calculated for the primary air, reburn motive air, reburn aspirated air, NH3, NG, 
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HEX air, and HEX water. As listed in Table 5.10, the uncertainty range of each flow meter was 

determined less than ± 1.0%. The unstable feed rates of the solid fuels were observed because of 

the errors of aspirated and motive air flow meters. The dominant parameter for the overall 

system uncertainty was the unstable reading of gas concentrations caused by the unstable feed 

rate. The fluctuation of data measurements was between ± 2.5 and ± 5%. Therefore, the final 

overall system uncertainty was determined in the range of ± 3.0 to ± 5.3% [127]. The 

repeatability was also estimated by two experimenters using the same reburn fuels in two 

different times. For the LAPCFB cases presented in figure 5.12, the mean repeatability was 

found to be about 96%. 

 

 
Figure 5.12. Repeatability analysis for reburn and Hg oxidation experiments. 
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In the Hg oxidation experiments using the flow reactor, the mercury vapor monitor measured 

less than 1.0 μg/m3 in the background laboratory air. About 10 – 25 μg/m3 Hg0 was measured in 

the system without flowing Hg0 because some Hg0 were deposited in tubes (Tygon tubes were 

used between the systems) and metal connecters due to the tests previously performed. 

Experiments with HCl were carefully managed, monitored, and repeated to get proper 

measurements due to large fluctuations when using HCl. The temperature of the Hg0 carrier gas 

in the Hg generator varied ± 0.3ºC from the set temperature, and this variation had a minor effect 

on the initial Hg0 concentration. The measured gas temperature was close to the reactor set 

temperature. Almost all measurements were conducted for the steady-state condition which was 

defined that the measurement fluctuated ± 5 μg/m3 over 5 minutes. For a few cases, the Hg0 

measurement was taken before it reached the steady-state condition. This was because of slow 

reactions, so that much more time was needed to be stabilized. In some cases, Hg oxidation did 

not appear immediately due to the time delay of the heating. 

For the determination of the overall system uncertainty for the flow reactor experiments, 

possible error ranges of instruments and measurements were considered. Table 5.11 shows the 

uncertainty range of Case VII (HCl + NO + O2). The uncertainty range of each mass flow 

controller (MFC) depended on gas concentrations, however, usually ± 0.5% or less. The 

measurements were taken in the range of ± 1 to ± 5 μg/m3. The temperature fluctuation of the Hg 

generator was about ± 0.3ºC. The Hg permeation tube was certified ± 2% uncertainty. The final 

overall system uncertainty was in the range of ± 2.3 to ± 5.7% [127]. The repeatability was also 

estimated using the same simulated flue gas in two different times, and it is graphically presented 

in figure 5.12. The results of Case VII (HCl + NO + O2) was compared, and the average error of 

the repeatability was found to be about 5.3% offset. 
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Table 5.11. Uncertainty for Case VII (HCl + NO + O2) of the flow reactor experiments. 
Uncertainty Factor Uncertainty of Each Factor (%) 

Hg0 Permeation Tube ± 2.00 

Hg0 Generator Temperature ± 0.32 

Balance N2 MFC ± 0.15 

Hg0 Carrier N2 MFC ± 0.11 

HCl MFC ± 0.18 

O2 MFC ± 0.32 

NO MFC ± 0.63 

Data Measurement ± 5.26 
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6. RESULTS OF BIOMASS REBURNING ON NOx CONTROL 

 

The main focus of the current study is a reburning on NOx reduction using a bench-scale boiler 

with coal and cattle biomass (CB). The CB includes feedlot biomass (FB) and dairy biomass 

(DB). Pure CB, pure coals and blends of coal:CB are used as reburn fuels. The results of NOx 

reduction in the biomass reburning are presented and discussed based on a number of variables: 

reburn fuels, reburn equivalence ratios (ERRBZ), reburn heat inputs, non-vitiated/vitiated reburn 

gases, heat exchangers (HEXs), reburn injection configurations, and baseline NOx 

concentrations. The results of other gas emissions (CO, CO2, SO2, CxHy) are discussed as well. 

 

 

6.1 Temperature Distribution 

The flue gas temperatures of the vertically down-fired combustor were measured during the 

experiments. Since the temperature plays a very significant role on the NOx formation and 

reduction, the temperature in the reburn zone (RBZ) was monitored and kept below 1600 K to 

prevent the high production of thermal NOx. In figure 6.1 (a), the gas temperatures were 

measured at spaced intervals of 6 in (15.24 cm) below the reburn zone. The axial temperature 

linearly decreased along the reactor. After the reactor is fired, the temperatures in downstream 

gradually increased with time at any given axial distance while the temperature of the reburn 

zone remained relatively steady. The sampling probe was located at the center of the reactor and 

at the location of 1.37 m below the reburn zone, and the radial temperature of the sampling area 

is presented in figure 6.1 (b). The radial gas temperatures between the layers of the insulation 

and refractory were relatively steady and also almost flat across the reactor indicating a thin 

boundary layer. 
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Figure 6.1. (a) Temperature distribution of the flue gas over the axial distance below the reburn 
nozzles and (b) Temperature distribution of the flue gas over the radial distance at the sampling 

port (at 137cm below the reburn nozzles). 
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6.2 NH3 Slip and Dilution of Reburn Gases 

Recall that NOx was simulated by firing the NG and air with a trace amount of NH3 in the 

primary burner. To ensure that all of injected NH3 was converted to NOx, the levels of NOx were 

measured before and after the NH3 injection during the NG combustion. The production of 

thermal NOx without the NH3 injection was measured between 50 and 70 ppm. After NH3 was 

injected, the level of NOx was measured between 420 and 440 ppm. This suggested that NH3 was 

responsible for generating about 350 ppm of NOx. The average amount of NH3 injected into the 

system was 1.44 cm3/s (0.18 SCFH) while the theoretical amount of NH3 required to generate 

350 ppm of NOx is 1.82 cm3/s (0.23 SCFH). It suggests that all NH3 injected in the primary zone 

was converted into NOx. The difference in the theoretical amount required and the amount 

injected may be attributed to measurement error or other errors inherent in the system.  

The dilution effect of the reburn air is significant on the measurement of NOx emission in 

[ppm], thus it should be accounted in further discussion. The initial gas emissions by NG 

combustion before the injection of the reburn air were 405 ppm of NOx, 1.1% of O2 and 12.06% 

of CO2. The gas emissions measured after the reburn air injection were 252 to 262 ppm of NOx, 

7.9 to 9.2% of O2 and 7.06 to 7.95% of CO2 for 0.95 < ERRBZ < 1.1. Assuming that reburn fuel 

did not produce any NOx, the addition of reburn gases with the primary gases will reduce the 

NOx by one third; however, the dilution effect in NOx emission is eliminated once the NOx 

emission was measured on a heat basis [g/GJ]. The NOx emission was 169 g/GJ (or 405 ppm) 

due to NG combustion, and if reburn air was added without reburn fuels, then the emission was 

measured in the range of 166 and 180 g/GJ (or 252 to 262 ppm) after the dilution. Therefore, the 

heat basis conversion eliminates the dilution effect and hence the results on a heat basis are used 

for the further discussion. The 3% O2 correction by EPA also neutralized the dilution effect but it 

is more appropriate to fuel-lean condition. 
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6.3 Effects of Reburn Equivalence Ratio (ERRBZ or φRBZ) 

The equivalence ratio (ER or φ) is typically defined as the ratio of the fuel-to-air ratio to the 

stoichiometric fuel-to-air ratio which is an inverse value of the stoichiometric ratio (SR). For the 

emission control of NOx, several reburn fuels were tested at various ERs in the reburn zone 

under the operating conditions of the base case (see Tables 4.1 and 4.2). Figure 6.2 presents the 

NOx emissions [g/GJ and lb/mmBTU] as a function of the ERRBZ, and the error bars of each 

measurement are also shown. The error ranges were determined to be about ± 5 to ± 10 g/GJ for 

NOx emissions, about ± 0.015 to ± 0.02 for the ERRBZ, and about ± 3 to ± 5% for NOx reductions, 

depending on the conditions. The baseline NOx concentration varied from 175 to 186 g/GJ (or 

420 to 440 ppm), depending on reburn fuels. The NOx emission decreases with an increase of the 

ERRBZ. The results showed decreases in NOx emission such as about 143 to 92 g/GJ for TXLC,  

139 to 66 g/GJ for 90:10 TXLC:LASSDB, 91 to 37 g/GJ for 80:20 TXLC:LASSDB, 17 to 8 

g/GJ for LASSDB, and 43 to 13 g/GJ for LAPCFB. There were two observations: (1) Higher the 

percentage of LASSDB in the reburn fuel, lower the NOx emission and (2) With increased 

ERRBZ, the NOx emission decreased due to the depletion of the oxygen in the reburn zone, and 

then the low O2 concentration slows down the NOx formation and allows the NOx reduction to be 

dominant. The extent of NOx reduction was found to be strongly dependent to the ERRBZ, with 

greater reduction in fuel-rich combustion. 
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Figure 6.2. NOx emission for several reburn fuels in the conditions of non-vitiation, 30% reburn 

heat input and 0° reburn injection with baseline NOx between 179 and 186 g/GJ. 
 

 

The verification of ERRBZ in the fuel-lean combustion (φ < 1.0) was performed by Eq. (6.1) 

based on the assumption of complete combustion [48]. 

 

2
76.41 OX−≈φ     (6.1) 

 

where XO2 is the mole fraction of O2 in the flue gas. The ERRBZ used in experiments was 

calculated by the flow rate of O2 injected in to the primary and reburn zone. The ERRBZ was 

predicted by Eq. (6.1) using the mole fraction of O2 measured by the gas analyzer. The ERRBZ 

predicted by Eq. (6.1) was close to or slightly higher than the ERRBZ calculated by the O2 flow 

rate, indicating more fuels were burnt than what it was expected. It may cause incomplete 

combustion and high CO emissions. 
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6.4 Effects of Biomass Blended with Coal 

Figure 6.3 shows the NOx reduction on a heat basis. Most interesting observation is that NOx 

reductions were found to be about 91 to 96% for LASSDB as the highest, 77 to 93% for 

LAPCFB as the second highest and 19 to 48% for TXLC as the lowest depending on the ERRBZ. 

It is because TXLC contains small amounts of VM while LASSDB and LAPCFB contain large 

amount of VM. Results of fuel blends are about 49 to 80% for 80:20 TXLC:LASSDB and 24 to 

64% for 90:10 TXLC:LASSDB depending on the ERRBZ. The results show that both LASSDB 

and LAPCFB are very effective in NOx reduction. Blending of 10% DB with coal increased the 

NOx reduction up to 16% more, and even up to 32% more for 80:20 TXLC:LASSDB. Results 

indicated NOx reduction increased with an increase of the LASSDB proportion in reburn fuels. 

Consistent findings are reported in the results of feedlot biomass (FB) reburning discussed later. 

Therefore, the CB (LASSDB and LAPCFB) can be used a very effective reburn fuel for the NOx 

emission control in coal-fired power plants. Theoretically finer particles heat faster and release 

volatiles faster, thus the emission control can be better. 
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Figure 6.3. NOx reduction on a heat basis for several reburn fuels in the conditions of non-

vitiation, 30% reburn heat input and 0° reburn injection. 
 
 
 

 
Figure 6.4. NOx emission in [g/GJ] and [lb/mmBTU] with blends of DB and FB (non-vitiation, 

30% heat input and 0° injection) with baseline NOx between 177 and 186 g/GJ. 
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In the current study, the composition of the reburn fuel seems to play an important role in 

NOx reduction. LASSDB contained more fuel-N and less fuel-oxygen which are responsible for 

NOx reduction. NH3 is one of the N containing compounds from fuel-N and reacts with NOx to 

reduce the NOx level, and lower O2 increases NOx reduction. With the 30% reburn heat input the 

injected amount of fuel-N was about the same in both LASSDB and LAPCFB (0.79 g/min in 

LASSDB and 0.78 g/min in LAPCFB) on a dry ash free (DAF) basis; however, lesser amounts 

of the fuel based oxygen were injected by LASSDB (7.86 g/min) than LAPCFB (9.52 g/min) on 

a DAF basis. Typically more CO will be produced by LAPCFB than LASSDB, thus 

stoichiometric O2 required by the VM of LASSDB will be higher compared to the VM of 

LAPCFB. As such local O2 will decrease faster for LASSDB. Therefore, LASSDB resulted in 

higher NOx reduction than LAPCFB due to the higher fuel-N and lower fuel-oxygen. Figure 6.4 

supports these results by showing the NOx emission with blends of LASSDB and LAPCFB. The 

NOx emissions increase with a decrease in LASSDB. For the TXLC case, the small amount of 

VM and low fuel-N (0.25 g/min) were the dominant factors for low NOx reductions even though 

it contains low fuel-oxygen (3.55 g/min) on a DAF basis. 
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6.5 Effects of O2 Concentration in Reburn Gas 

The use of the flue gas recirculation (FGR) produces lesser NOx emission than using air 

alone since the low O2 concentration causes the NOx formation rate to be slower. Though the 

vitiated reburn gas causes higher gas velocity and shorter residence time than the non-vitiated 

reburn gas, it allows the nitrogen species to be released in an oxygen deprived region, thus 

allowing more HCN and NH3 to be available for NOx reduction rather than NOx generation. To 

simulate the reduced O2 concentration through FGR, the N2 gas was mixed with the reburn air. 

This vitiated reburn gas caused the O2 concentration in the reburn zone to drop from 20.9 to 

12.5%. The effect of the vitiation gas on NOx reduction was investigated at 30% reburn heat 

input and 0° reburn injection. The results shown in figure 6.5 (a) indicated the vitiation 

decreased NOx emissions, and the larger decrease in the NOx emission occurred under fuel-rich 

combustions. In figure 6.5 (b) the vitiated reburn gas resulted in up to 6% more NOx reduction at 

φRBZ = 1.0, and resulted in up to 15% more NOx reduction at φRBZ = 1.1. The vitiation effect was 

stronger in fuel-rich conditions. It was found that the vitiated reburn gas played a significant role 

on the control of NOx emission; however, it seems that vitiated reburn gas does not improve the 

NOx reduction significantly when LASSDB was used. Note that the use of the real FGR gas can 

increase the levels of CO2, H2O and NOx in the combustion zone. The CO2 and H2O can also 

react with hydrocarbon (HC) and C(s).  
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Figure 6.5. Effect of the vitiated reburn air (30% reburn heat input and 0° reburn injection): (a) 

NOx emission and (b) NOx reduction on a heat basis. 
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6.6 Effects of Reburn Injection 

Several configurations of the reburn injection shown in figure 4.2 were tested using 80:20 

and 90:10 TXLC:LASSDB fuels in the conditions of the non-vitiation and 30% reburn heat 

input. The tested cases were 1) 0° circular, 2) 45° circular and 3) 45° oval injections in the 

symmetric configuration and 4) 45° circular injection in the asymmetric configuration. Various 

reburn injection configurations provided different mixing conditions within the reburn zone. The 

45° upward injection of the down-fired boiler provided more mixing time, residence time and 

reaction time within the reburn zone than the lateral (0°) injection. Better mixing with the 

primary gases promotes rapid heat up of fuel particles, faster release of volatiles along with rapid 

reduction in the local O2 concentration because of the oxidation and increased residence time, 

and enhances the reaction selectivity. The reduced concentration of oxygen inhibits the NOx 

formation. The mixing time of the hot flue gas in the reactor was estimated using CO2 from the 

reburn port and air from the primary port. The detailed procedures and conditions are presented 

in Appendix D. The mixing time was found to be less than 350 ms for the 0° injection, which is 

very similar to the previous result reported in [128]. The previous result was 320 ms using N2, 

and the residence time was estimated between 550 to 750 ms depending on the reburn fuel and 

temperature [128]. The optimum residence time is typically coupled to the mixing time. 

The gas temperatures of 0° circular, 45° circular and 45° oval injections in the symmetric 

configuration are presented in figure 6.6. For the oval injection, the longer diameter of the 

nozzles is normal to the furnace axis. The temperatures of the 0° circular and 45° circular 

injections were relatively close to each other and higher than the temperatures of the 45° oval 

injection. It suggested the circular injection produced better mixing condition than the oval 

injection in these cases because better mixing with the primary gases promotes rapid heat up of 

fuel particles.  
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Figure 6.6. Gas temperature distribution for the effect of the reburn injection in the conditions of 

the non-vitiation and 30% reburn heat input. 
 
 
 

 
Figure 6.7. Effect of the reburn injection (0° circular, 45° circular and 45° oval injections in the 

symmetric configuration and 45° circular injection in the asymmetric configuration) in the 
conditions of the non-vitiation and 30% reburn heat input. 
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The results of NOx emission are presented in figure 6.7. The 45° upward injection provided 

longer residence time than the lateral (0°) injection, and thus the 45° injection resulted in less 

NOx emissions. The 45° circular injection with better mixing also resulted in less NOx emissions 

than the 45° oval injection for both fuel blends. The previous experimental results showed a 0° 

flat spray (or oval) injector produced high NOx reduction with higher gas temperatures than a 0° 

circular jet injector [27]. The current and previous results are inconsistent; however, the 

differences of the gas temperature can explain the inconsistent results. In the pervious results, the 

0° flat spray injector caused a stagnation type flow of the reburn fuel and air for the opposite 

reburn fuel injectors, and thus probably the fuel particles were scattered very well burning 

rapidly. It resulted in higher gas temperatures than the 0° circular jet injector. However, in the 

current study, the 45° oval injector produced lower gas temperatures than the 45° circular 

injector. And thus, the 45° circular injector created better performance than the 45° oval injector. 

The NO emissions in the asymmetric configuration are presented in figure 6.7. The 45° 

upward injection with circular nozzles in the vitiation case (12.5% O2) was examined using 

90:10 TXLC:LASSDB. As shown in figure 4.2 (c), reburn fuel and air (20.9% O2) were injected 

from one nozzle, and N2 was injected from the other nozzle. The asymmetric reburn injection 

resulted in very poor NOx reduction compared to the vitiation case of the symmetric 

configuration. The 45° injection in the asymmetric case resulted in 16 to 45% NOx reduction 

while the 0° injection in the symmetric case achieved 23 to 77%, depending on the ERRBZ. It is 

because enough oxygen was available at the reburn fuel side to produce fuel NOx instead of 

reducing NOx emissions, and a good-mixing did not take place in the reburn zone. Therefore, the 

symmetric configuration of the reburn injection showed better NOx reduction than the 

asymmetric configuration. This result for the asymmetric case is consistent with the result of 

pilot-scale tests performed in Southern Research Institute in Alabama [129]. 
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6.7 Effects of Reburn Heat Input 

Typical heat generated by combustion of reburn fuels in pulverized coal-fired boilers ranges 

from 10 to 30% of the total heat as listed in Table 2.1, but achieving high NOx reductions with 

less reburn heat input is essential but challenged when the reburn fuel supply is limited. Further, 

the small heat fraction by reburning can reduce the problems of the high ash production, fouling, 

slagging, and the resource limitation of biomass, especially using CB for the long-time 

operation. Figure 6.8 presents the effect of the reburn heat input on NOx emission using 

LASSDB in the conditions of the non-vitiation and lateral (0°) reburn injection in the symmetric 

configuration. The reburn heat input varied from 20 to 30% with the similar amount of the 

baseline NOx concentration produced by the primary fuel combustion. Once the reburn heat 

input decreased from 30 to 20%, NOx emissions increased about 2.5 to 4 times depending on the 

ERRBZ. In fuel-lean combustion (φRBZ = 0.95), the increment of the NOx emission was large (17 

to 65 g/GJ) while it became smaller (8 to 19 g/GJ) in fuel-rich combustion (φRBZ = 1.1). Though 

it was found the high NOx emissions in the 20% heat input compared to the 30% heat input, the 

high NOx reductions were still achieved between 64 and 89% for the 20% heat input. 

Considering the results with problems caused by CB, the 20% reburn heat input can be the better 

operating condition than the 30% reburn heat input for the long-time operation. High NOx 

reduction efficiency with low amounts of the CB injection per a boiler unit makes more boiler 

units use CB. 
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Figure 6.8. Effect of the reburn heat input using LASSDB (non-vitiation and lateral (0°) reburn 

injection) with baseline NOx between 175 and 186 g/GJ. 
 
 
 

 
Figure 6.9. Effect of the initial or baseline NOx (non-vitiation, 30% heat input and 45° injection): 

90:10 blends for the circular injection & 80:20 blends for the oval injection. 
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6.8 Effects of Baseline NOx Concentration 

The effect of the initial or baseline NOx concentration produced by primary fuel combustion 

was investigated in the conditions of the non-vitiation, 30% reburn heat input and 45° reburn 

injection. The results are presented in figure 6.9. For 90:10 TXLC:LASSDB, the 45° circular 

reburn nozzles were used, and three baseline NOx concentrations (125, 275 and 440 ppm) were 

tested. For 80:20 TXLC:LASSDB, the 45° oval nozzles were used, and two baseline NOx 

concentrations (420 and 630 ppm) were tested. The results of 440 ppm baseline NOx (90:10 

blend) and 420 ppm baseline NOx (80:20 blend) were already presented in Effect of Reburn 

Injection. The NOx emissions decreased from 191 to 132 g/GJ and 139 to 86 g/GJ for the 80:20 

blends with the baseline NOx of 630 and 420 ppm, respectively. For the 90:10 blends with the 

baseline NOx of 440 and 275 ppm, NOx emissions were very similar and decreased from 125 to 

51 g/GJ and 118 to 51 g/GJ, respectively. The NOx emissions for the 125 ppm baseline NOx 

decreased from 132 to 83 g/GJ. 

The results of NOx reductions are presented in figure 6.10. For the baseline NOx of 440 and 

275 ppm, the NOx reductions increased from 33 to 73% and 1 to 57 %, respectively, with an 

increase of the ERRBZ in figure 6.10 (a). About 16 to 32% offset in NOx reduction was found 

between the cases, and lower NOx reductions were found with the lower baseline NOx case. 

Though the case using the 125 ppm baseline NOx showed the decrease in the NOx emission, 

negative NOx reductions (or NOx formations) were measured as 150% at ERRBZ = 0.95 and 57% 

at ERRBZ = 1.1 shown in figure 6.10 (a). It indicated NOx was formed instead of reduced during 

reburning. 
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Figure 6.10. Effect of the initial or baseline NOx produced by primary fuel combustion (non-
vitiation, 30% heat input and 45° injection): (a) NOx reduction [%] for 90:10 blends with the 

circular nozzles and (b) NOx reduction [%] for 80:20 blends with the oval nozzles. 
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In figure 6.10 (b), no significant difference was found between the cases of 630 and 420 ppm 

baseline NOx for 80:20 TXLC:LASSDB. Though the 630 ppm case showed higher NOx 

emissions than the 420 ppm case, their offset in NOx reduction was found to be about 3% for all 

ERRBZ. These results indicated NOx reductions took place with high baseline NOx concentrations 

(i.e. 275, 420, 440, and 630 ppm) while NOx formations took place with the low baseline NOx 

concentration (i.e. 125 ppm). NOx reduction with NH3 slowed down compared to NOx formation 

because of the low ambient NOx levels. The change of NOx reduction was not significant with 

baseline NOx of about 400 ppm or higher, but it was significant with baseline NOx less than 400 

ppm. The result of the 125 ppm case showed even negative NOx reductions. The results of 90:10 

and 80:20 TXLC:LASSDB cases show a good agreement with previous findings in [32]. NOx 

reduction typically takes place when NOx molecules collide and react with NH3 derived from 

fuel-N during fuel combustion. The small amount of NOx has less probability of collisions and 

reactions with NH3. Unlike the NOx species, more O2 is available in the reburn zone to react with 

NH3 to form NOx. Therefore, NOx formations (or negative NOx reductions) took place in the 

case of the baseline NOx of 125 ppm. 

It was also possible that CO had an effect on the NOx formation. NOx formations during 

HCN and NH3 oxidation with high oxygen concentrations were studied at temperatures between 

870 and 1270 K in fuel combustion [120]. It was found that approximately 22% HCN and 40% 

NH3 were converted to NOx by the addition of 1250 ppm CO at 1270 K. In the 125 ppm (90:10 

TXLC:LASSDB) case of the current study, concentrations of O2 [%], NOx [ppm] and CO2 [%] 

were higher than those in the 440 ppm case of 90:10 TXLC:LASSDB, but concentrations of CO 

[%] were lower. The CO concentrations in the 440 ppm case were found to be about 3700 to 

8500 ppm more than those in the 125 ppm case, depending on the ERRBZ. Based on the results 

reported by Wargadalam et al. [120], it can be deduced that approximately 3700 to 8500 ppm of 
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CO was used for the NOx formation during HCN and NH3 oxidation in the 125 ppm case, and it 

resulted in 57% to 150% more NOx emission compared to its baseline NOx concentration. 

Between 440 and 275 ppm cases, approximately 1800 to 5000 ppm more CO was found in the 

440 ppm baseline NOx case, and these CO concentrations reduced the extent of NOx reduction 

much in the 275 ppm case. 

In summary, these results reveal that baseline NOx emissions higher than 275 ppm (or 119 

g/GJ and 0.28 lb/mmBTU) are very effective on the NOx emission control during reburning coal 

and DB. However, the DB reburning may not as powerful as other techniques to control NOx 

emission for the boiler systems in which the baseline NOx emission is lower than 275 ppm. 

Approximately 75% of all power plants in US have been already equipped low-NOx burners 

(LNBs) which are able to achieve 70% NOx reduction. Therefore, it should be carefully 

considered for designing new boiler systems with both LNBs and reburn systems or retrofitting 

old LNB systems by combining reburn systems because the low NOx reduction efficiency can be 

obtained, even NOx formation can be observed. 
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6.9 Effects of Heat Exchanger (HEX) 

To investigate the fouling potential, either air cooled or water cooled HEXs were installed. 

The results on the fouling reported in Section 7. However, the presence of HEXs alters 

temperature distribution in the furnace and hence may affect NOx emissions. The effects of 

HEXs on NOx emission and reduction are reported here. The effect of HEX on NOx emission 

was examined in the presence and absence of three single-passed air cooled HEXs in the coal-

fired boiler. The operating conditions between these cases are almost identical in the conditions 

of the non-vitiation and lateral (0°) reburn injection. The distributions of the gas temperature for 

the cases in the presence and absence of HEXs are shown in figure 6.11. The local gas 

temperatures near the HEXs dropped faster in the presence of HEXs than the others because of 

the heat transfer to HEXs. The temperature drop was between 30 to 55 K for the cases without 

HEXs while it was between 70 to 110 K for the cases with HEXs.  

 

 
Figure 6.11. Temperature distributions of the flue gas along the axial distance from the reburn 

nozzle for the lateral (0°) reburn injection with and without HEXs. 
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Figure 6.12. Comparison results of the cases with and without HEXs (non-vitiation and lateral 
(0°) reburn injection): (a) NOx emission in [g/GJ] and [lb/mmBTU] and (b) NOx reduction [%]. 
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In figure 6.12, the effects of presence of HEXs on NOx emission and reduction are 

presented. The results for the cases in the absence of HEXs were adopted from the previous 

cases performed by Goughnour [128] and compared with the results for the cases in the presence 

of air cooled HEXs obtained for the current study. The results adopted from previous cases were 

reanalyzed based on the current operating conditions and reconverted on a heat basis using the 

conversion equations reported in Section 5. The use of HEXs results in a significant effect on the 

NOx reduction as shown in figure 6.12. It is found that NOx emissions for the cases with HEXs 

are lower than those for the cases without HEXs. For example, at ERRBZ of 1.1 in figure 6.12 (a), 

about 128 to 147 g/GJ of NOx emission was found for the cases without HEXs depending on 

reburn fuels while about 39 to 91 g/GJ of NOx emission was found for the HEX cases. For the 

NOx reduction at ERRBZ of 1.1 shown in figure 6.12 (b), about 23 to 32% was achieved for the 

cases without HEXs while about 47 to 78% was obtained for the HEX cases. The use of HEXs in 

the boiler increased NOx reduction about 23 to 46% more. The possible cause for these results is 

the catalytic effect of the deposition of fly ash on HEXs. The fly ash in power plants can be used 

as a catalyst in SCR systems for NOx and SOx reductions since it contains high silica and 

alumina contents [130, 131]. During reburning, the injection of metal-containing compounds 

(Fe-, Na-, K-, and Ca-) with the primary fuel was effective on NOx reduction, and the use of fly 

ash including metallic oxides (Fe2O3, Na2O, K2O, and CaO) was also somewhat effective on NOx 

reduction [28, 132]. 

In the current study, it seemed that the catalytic effect of the fly ash produced from CB was 

stronger than that of the fly ash produced from TXLC. See figure 6.13 for the result comparison 

at ERRBZ of 1.1. Approximately 24% NOx reduction was increased for TXLC in the presence of 

HEXs, while about 41% for 90:10 TXLC:LAPCFB and 34% for 90:10 TXLC:HAPCFB were 

increased. It is because the BFs of the blended fuels were higher than the BF of TXLC (see the 



www.manaraa.com

 138

BF results in the next section), and hence the amounts of ash produced from the blended fuels 

were higher indicating more metallic oxides were available during the similar combustion period. 

Also, a layer of ash depositions was formed on the surface of the HEX. The fuel particles on the 

surface kept burning during the combustion and finally became pure ash, thus even more 

metallic oxides in the ash was available for the cases in the presence of HEXs.  

 

 

Figure 6.13. Result comparison at ERRBZ = 1.1 for the cases with and without HEXs (non-
vitiation and lateral (0°) reburn injection). 
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6.10 Emissions along the Distance from Reburn Nozzles 

Emissions of NOx [g/GJ] and CO [%] along the distance from reburn nozzles are presented 

in figure 6.14 in conditions of the non-vitiation and lateral (0°) reburn injection with HEXs. Four 

locations of the sampling ports are presented in figure 4.1. Volatiles are released very quickly 

during combustion, and NH3 reacts with NOx. The higher combustion temperatures, the faster 

volatile emissions. Most cases in figure 6.14 show less than 10% reduction along the distance 

from the reburn nozzles except 60:40 TXLC:LAPCFB (ERRBZ = 1.0). It indicated almost all NOx 

reduction took place around the reburn zone where the reburn fuel was injected into the boiler. 

Less oxygen was available in the downstream of the boiler, and hence less amount of CO was 

presented. Thus CO decreased along the distance as well. 

 

 
Figure 6.14. NOx [g/GJ] and CO [%] emissions along the axial distance from reburn nozzles 

(non-vitiation and lateral (0°) reburn injection with HEXs). 
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6.11 Emissions of Other Gas Components 

Gas emissions of CO, CO2, SO2, and CxHy were measured along with the NOx emissions and 

the results are summarized. Figure 6.15 shows CO emissions in the conditions of the 30% reburn 

heat input and 0° reburn injection. During the reburn combustion, the fuel-rich environment 

presents in the reactor, so that high CO emissions were expected. Thus CO emissions increased 

with an increase of the ERRBZ. High CO emissions in the fuel-lean combustion (φRBZ = 0.95) 

were measured due to the short residence time which caused incomplete combustion of CO. The 

effect of the reburn fuels are presented in figure 6.15 (a). It is seen that biomass fuels emitted 

more CO than both blends of coal:biomass and coal-only fuels since biomass particles contain 

more oxygen compared to coal particles. Further they release more VM. The higher VM also 

results in higher BF for blend fuels compared to coal. Figure 6.15 (b) presents the effect of the 

reburn heat input on CO emission. The 20% and 30% reburn heat inputs for LASSDB were 

compared in the conditions of the non-vitiation and lateral (0°) reburn injection. The higher 

reburn heat input, the higher CO emission. 
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Figure 6.15. (a) Effect of the reburn fuels on CO emissions in different experimental conditions 

and (b) Effect of the reburn heat input using LASSDB. 
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Figure 6.16. (a) Effect of the reburn injection on CO emissions and (b) Relation of CO and NOx 

emissions in different experimental conditions. 
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Figure 6.16 (a) presents the effect of the reburn injection on CO emissions. The results 

showed the 45° upward reburn injection produced more CO emissions due to it increased the 

residence time which resulted in combustion of more fuel particles in the reburn zone. In the 

fuel-rich combustion, CO emissions typically increase while NOx emissions decrease with an 

increase of the ERRBZ. Figure 6.16 (b) presents CO and NOx emissions as a function of the ERRBZ 

in different experimental conditions, and it showed a linear relation between CO and NOx 

emissions.  

In figure 6.17 (a), CO2 emissions decreased with an increase of the ERRBZ. It is also noted 

that the N2 addition for vitiation cases diluted the level of CO2, thus the CO2 level for non-

vitiation cases were higher. The CxHy (unburned hydrocarbons) emissions increased with the 

increment of the ERRBZ shown in figure 6.17 (b). CxHy is typically burned to CO2 and water with 

enough O2. When the ERRBZ increases, the depletion of O2 causes less combustion of CxHy and 

produces less CO2 and water. The results showed combustion of biomass-only fuels produced 

much more CxHy than the other fuels. The results of the other fuels, blends of coal:biomass and 

coal-only fuels, showed less than 100 ppm independent on the ERRBZ. Higher CxHy emission 

causes higher BF (note that BF implies gasification fraction in the event CO and CxHy are not 

burnt to CO2 and H2O). 
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Figure 6.17. (a) CO2 emissions and (b) CxHy emissions as a function of the ERRBZ in different 

experimental conditions. 
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The SO2 emissions in figure 6.18 increased with the increment of the ERRBZ. The 

measurement of SO2 was interfered by water condensed in the gas analyzer probe. The stable 

measurements of SO2 emissions were presented in the figure 6.18. Since SO2 is readily soluble to 

the cold water, more SO2 emissions should be detected for the case the less water is produced. 

With the increment of ERRBZ, less water was produced from CxHy, hence a higher level of SO2 

was presented. 

 

 
Figure 6.18. SO2 emissions as a function of the ERRBZ in different experimental conditions. 
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6.12 Burnt Fraction (BF) 

As opposed to the DOE-NETL facility (500,000 BTU/h) operated over several hours [25], 

the current bench-scale (30 kW or 100,000 BTU/h) facility has operated over shorter duration (3 

– 4 hours) due to the limited feeder capacity. Thus enough ash depositions were not formed to 

cause the slagging behavior. The proportions of moisture, ash, and combustibles (volatile matter 

and fixed carbon) for the reburn fuels are presented in Table 5.1. Combustibles in fuels are 

80.03% for LASSDB, 79.47% for LAPCFB and 81.41% for TXLC on a dry basis. In order to 

determine the BF (or gasification fraction), the bottom ash was collected from the ash port filled 

with water at the furnace bottom after the furnace completely cooled down. During reburning the 

ERRBZ varied from 0.95 to 1.1, and the combustion period was different case by case; however, it 

seems that the overall condition of reburning was slightly fuel-rich. The BF is defined as the 

ratio of combustibles burnt to the initial combustible mass. The ash samples were analyzed using 

ASTM methods (D-3175, E-872 and E-1755) and the BF was determined on a dry basis by the 

results of the ash analysis reported in Reference [48].  

The results of the BF are listed in Table 6.1, and the elemental analysis of ash was presented 

in Table 5.4. The BF results of the bottom ash are somewhat low in Table 6.1; 64.15% for pure 

TXLC, 65.78% for 90:10 TXLC:LASSDB, 70.39% for 80:20 TXLC:LASSDB, 85.29% for 

LASSDB, 67.35% for 90:10 TXLC:LAPCFB, 87.70% for 70:30 TXLC:LAPCFB, and 88.90% 

for LAPCFB. The majority of lighter fly ash particles in the gas stream flowed into the exhaust 

duct, and most of heavy solid particles dropped into the water in the ash port. Thus the bottom 

ash collected from the ash port contained most of the heavy particles, and the BF calculated by 

the analysis of the heavy ash particles can be low. For the accurate BF estimation, both light fly 

ash and heavy bottom ash produced during the same period should be analyzed. It is found that 

the BF increased with the increase of the proportion of DB in the reburn fuels. It is because DB 



www.manaraa.com

 147

has higher volatile matters (almost 80% on a DAF basis), and its particle sizes are smaller 

compared to TXLC. The BFs of LASSDB based fuels were lower than the BFs of LAPCFB 

based fuels since LASSDB contained bigger particles than LAPCFB shown in Table 5.7. When 

the HEXs were used during reburning, the BFs of the ash samples collected from all surfaces of 

HEXs were found to be about 100% (or pure ash) since the fuel particles on the surface kept 

burning during the combustion. The analyses of BF and combustible loss for ash collected from 

the surfaces of the HEXs are presented and discussed in Section 7. 

 

Table 6.1. Ash analysis for burnt fraction (BF) on a dry basis for the bottom ash. 

Reburn Fuel Ash [w%] Combustibles [w%] Burnt Fraction [w%] 

LASSDB 62.91 37.09 85.29 

80:20 TXLC:LASSDB 43.77 56.23 70.39 

90:10 TXLC:LASSDB 40.46 59.54 65.78 

TXLC 38.91 61.09 64.15 

LAPCFB 69.94 30.06 88.90 

70:30 TXLC:LAPCFB 65.85 34.15 87.70 

90:10 TXLC:LAPCFB 41.47 58.53 67.35 
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7. RESULTS OF ASH FOULING DURING REBURNING 

 

This section summarizes the results of ash fouling in the biomass reburning under transient 

condition and short-time operation. The main focus of this study is to determine the heat transfer 

performance and combustion efficiency during the biomass reburning using the method 

proposed in Section 5. Many studies have been focused on fouling behavior in steady-state 

conditions presented in Section 2; however, this section deals with transient conditions in the 

bench-scale facility. The fouling experiment is a supplemental study to the biomass reburning. 

 

 

7.1 Fouling Using Air Cooled HEXs 

7.1.1. Temperature Profile 

The flue gas temperatures of the vertically down-fired combustor were measured at spaced 

intervals of 6 in (15.24 cm) below the reburn nozzles as shown in figure 4.1. The temperature of 

the hot flue gas linearly decreases along the reactor, and the linear equation was used to measure 

flue gas temperatures above (at the inlet) and below (at the outlet) of heat exchangers (HEXs) as 

shown in figure 4.1 (d). The temperature is a very significant factor to the reaction rate of NOx 

formation and reduction. The temperature of the reburn zone (RBZ) was monitored and kept 

below 1320ºC (2400ºF) to prevent the production of thermal NOx. Radial temperatures in the 

reactor were measured and were similar to the results in figure 6.1 (b). The bench-scale facility 

was operated under the transient and short-time operation for the conditions of the non-vitiation, 

30% reburn heat input and lateral (0°) reburn injection. The transient condition is defined as the 

condition in which all temperatures of the cold fluid and the hot flue gas increase as a function of 

time. The cold fluid in HEXs was air for most of cases and water for some cases of DB blends. 
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Figure 7.1 (a) presents temperature distributions of the hot flue gas measured at the gas inlet 

and outlet for the three air cooled HEXs (top, middle and bottom) when natural gas (NG) is fired 

for ashless cases. In the beginning, the primary fuel (NG) combustion produced 70% (21 kW, 

70,000 BTU/h) of the total heat. After 65 minutes, the flow rates of the primary fuel and air were 

increased to generate 100% (30 kW or 100,000 BTU/h) of the total heat and the corresponding 

increase in gas temperatures. Figure 7.1 (b) shows temperature distributions of the cold gas (air) 

at each end of the HEXs. The exit temperature was higher than the inlet temperature. The air 

flowed into the HEXs after about 25 minutes, causing all temperatures to decrease, and then they 

increased again. After 65 minutes, when all temperatures increased the primary throughput was 

increased to 30 kW. The local temperature differences (ΔT = Texit - Tin) between the inlet and the 

exit of each HEX increased over time. 

Figure 7.2 presents temperature profiles of the vertically down-fired combustor along the 

axis from the RBZ at certain times (90, 120, 150, and 180 minutes). The temperature linearly 

decreases along the axis and gradually increased with time at any given axial distance. The 

temperature distributions of NG combustion for the ashless cases shown in figures 7.1 and 7.2 

are defined as reference temperature distributions for the future analyses and discussions. 
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Figure 7.1. Temperature distributions of the hot and cold gases with the primary fuel (NG) to 
generate 100% of the total heat without ash depositions: (a) Hot flue gas stream and (b) Cold 

(airflow) gas. 
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Figure 7.2. Temperature profile of the vertically down-fired combustor along the vertical 

distance from the reburn nozzles. 
 

 

The experiments were then repeated with 70% of the heat rate supplied by the primary fuel 

(NG) and 30% by solid reburn fuels with ash in order to understand the transition of the cold gas 

temperatures under the condition with the ash deposition. The flue gas temperatures of the inlet 

and exit of HEXs are close to each other just before the cold gas starts. The reburn fuel and air 

(about 20% of total air) are injected in order to produce 30% of the total heat after 65 min. In the 

case of 100% LAPCFB, the local temperature differences (ΔT) of the cold gas in HEX for the 

top and middle HEXs were reduced while ΔTBot increased. As a result, when ΔT increases, the 

rate of increase of the exit temperature is higher than that of the inlet temperature. Hence the heat 

transfer rate (Q& ) to the HEX increases over time. When ΔT decreases, the rate of increase of the 

inlet temperature is higher than the rate of increase of the exit temperature. This causes the heat 

transfer rate to the HEX to decrease over time. 
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7.1.2. Criteria for Fouling 

Because of the growth the ash deposition, the decrease of overall heat transfer coefficients 

(OHTC) is typically expected under the steady-state condition with time. However, in the 

transient condition, a similar result may not be expected. Due to the smaller size of reactor, the 

temperature difference at the inlet and exit may not be steady unless the long period combustion; 

further the small scale reactor clogged when FB was burnt over longer periods, particularly with 

the combustion of high ash FB. Hence results are interpreted using the results of temperature 

distributions of the solid fuel combustion (ash deposition cases) and comparing distribution with 

reference distribution for NG combustion (ashless cases). Figure 7.3 shows results of OHTCs 

and log mean temperature differences (LMTDs) for ashless cases using the temperature data 

shown in figure 7.1. In particular, time dependant temperature functions (T(t)) were used after 

100% heat input was generated. In figure 7.3 (a), the OHTC (U) increased with time. The sudden 

jump of UTop appeared due to the decrease of the air temperature caused by the adjustment of the 

experimental settings. The OHTC of the top and middle HEXs slowly increased while that of the 

bottom HEX quickly increased. The heat transfer rate to the HEX increased with time since hot 

gas temperatures kept increasing during combustion. It was not the same phenomenon that 

occurred in steady-state conditions. The typical values of the OHTC under the steady-state 

condition are listed in Table 5.9. Figure 7.3 (b) shows the trend of the LMTD over time for the 

case of no ash depositions. It was observed that the LMTD decreased with time, and also varied 

with the position of the HEX. The decreasing tendency of the LMTD means that temperatures of 

the hot flue gas and the cold gas (air) became closer to each other over time due to the heat 

transfer from the flue gas to the HEX. Based on the temperature measurement, temperatures of 

the cold gas increased twice faster than temperatures of the flue gas. The LMTD of the middle 

HEX was the highest, and the LMTD of the top HEX was the lowest. 
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Figure 7.3. Overall heat transfer coefficients (OHTC) and log mean temperature differences 

(LMTD) in the conditions of 30 kW heat input for ashless cases: (a) OHTC (U) and (b) LMTD. 
  

 



www.manaraa.com

 154

In order to verify the results mentioned above, a simple calculation was made using the data 

in figure 7.1. The average temperatures of both inlet and exit of the hot flue gas and those of the 

cold gas were obtained. The differences of the average temperatures of hot and cold gases were 

obtained as 391ºF (top), 520ºF (middle), and 472ºF (bottom) at 0 minutes and 322ºF (top), 405ºF 

(middle), and 366ºF (bottom) at 120 minutes. The values of the middle HEX were the highest, 

and those of the top HEX were the lowest. Figure 7.3 was used as a criterion for evaluating the 

effect of the presence of ash and the deposition of ash from solid reburn fuels. Particularly the 

rates of increase of the OHTC in ash deposition cases are compared with those in ashless cases. 

 

7.1.3. TXLC 

As a base case, TXLC was injected as a reburn fuel. It contains 11.46 % ash which is the 

lowest amount among the tested reburn fuels. It was seen that more ash deposits were formed on 

the surface of the bottom HEX than the surfaces of other HEXs since the ash concentration in the 

flue gas was high. The top HEX was covered by a thin layer of the black slag and little bit of 

powdered ash since the gas temperature was in the range of the solidified slag production. 

However, not much black slag was observed. The middle and bottom HEXs were mostly 

covered by a powdered ash layer because the coal was almost completely burnt below 800ºC 

(1470ºF). The powdered ash covered the top area of the HEXs, while their bottom areas were 

usually very clean. The ash deposition on the bottom areas of the HEXs was relatively hard to 

form since the gas stream flowed vertically downward. It was also possible some of ash 

depositions dropped off from the bottom of the HEX surfaces when the HEXs were detached 

from the boiler at the end of experiments. 

The OHTC (U) of the HEXs are shown in figure 7.4 (a). The OHTC seem to be increase 

while the layer of ash formed on the surfaces of the HEXs. It was because the gas temperature 
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kept increasing with increasing heat transfer rate to the HEX during combustion of the solid 

fuels under transient conditions. The OHTC of the top and bottom HEXs increased, while the 

OHTC of the middle HEX decreased with time. Figure 7.4 (b) shows the ratio of the OHTC with 

and without ash deposits over time. Because operating temperatures were different case by case, 

data under the condition of the similar gas inlet temperature were selected and used. The results 

show the OHTC of the ash deposition case was lower than that of the ashless case. The ratios of 

OHTC(ash) to OHTC(no ash) for all HEXs decreased. Due to lower temperatures and thicker 

ash layer for the bottom HEXs, the OHTC ratio of the bottom HEX is expected to be the lowest 

value; however, the results shows somewhat higher values. The decreasing tendency of the 

OHTC ratio was still observed over time due to the growth of the ash deposition. The presence 

of ash in gas phase increased radiation heat transfer rate while the deposition reduced the 

conductive heat transfer rate. Apparently for TXLC, the deposition effect on heat transfer 

seemed to be dominant. 

Figure 7.5 (a) presents the LMTD trend of the HEXs with TXLC. It was observed that the 

LMTD decreased with time, and also varied with the position of the HEX. The LMTD of the 

middle HEX was the highest, and the LMTD of the top HEX was the lowest. The results were 

similar to those found in the ashless case. Figure 7.5 (b) shows the ratio of the LMTD with and 

without ash depositions over time. An increasing tendency is expected due to the ash deposition. 

LMTD ratios of the top and bottom HEXs increased while that of the middle HEX decreased. 
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Figure 7.4. Overall heat transfer coefficients (OHTC) for pure TXLC as a reburn fuel: (a) OHTC 

(U) and (b) Ratios of the OHTC with and without ash deposition. 
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Figure 7.5. Log mean temperature differences (LMTD) for pure TXLC as a reburn fuel: (a) 

LMTD and (b) Ratios of the LMTD with and without ash deposition. 
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7.1.4. LAPCFB 

Pure LAPCFB that contains 16.50 % of the ash content was injected into the reburn zone. As 

shown in figure 7.6, heavier ash depositions were formed compared to the pure TXLC. More ash 

was formed along the reactor from the top to the bottom. The top HEX was mostly covered by 

the thin layer of the black slag at the center and little bit of ash at both sides. However, the 

middle and bottom HEXs were mostly covered by the powdered ash layer. More black slag was 

observed for LAPCFB than TXLC. The top areas of the HEXs were heavily covered by ash 

particles, but their bottom areas were barely covered. It is likely that the fuel which contains 

more ash contents causes heavier ash deposition. 

In figure 7.7 (a), the OHTC (U) of the middle and bottom HEXs increased while that of the 

top HEXs decreased. It was because the thin layer of the black slag had less thermal conductivity 

than that of the ash powder layer. Theoretically, the smaller particle sizes would burn faster and 

hence would produce hotter gases. The particles smaller than 75 μm are 43% for LAPCFB and 

24% for TXLC as shown in figure 5.3. Thus the flue gas temperature of LAPCFB increased 

faster than that of TXLC and no ash deposition in the same time period. It is concluded that the 

ash deposition caused a decrease in OHTC on the top and bottom HEXs. The ratios of the OHTC 

with and without ash depositions over time are presented in figure 7.7 (b). For the ashless cases, 

there were no particles to transfer heat by radiation, and hence the OHTC ratios were more than 

1 in the initial period. Note that the numerator in Eq. (5.15) represents heat gained by both heat 

radiation and convection. As more ash is being deposited, the growing ash layer become as an 

insulator, thus the OHTC ratios decrease. At the top section of the burner, the temperatures were 

high and ash became sticky tending to get high heat radiation; however, the gas temperatures in 

the middle of the boiler were lower than the top temperatures. Thus the radiation heat 

contribution to the middle HEX was less, and heat radiation to the bottom HEX was lowest.  
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Figure 7.6. Ash depositions on HEXs for pure LAPCFB as a reburn fuel: (a) Top view of HEXs 

and (b) Bottom view of HEXs. 
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Figure 7.7. Overall heat transfer coefficients (OHTC) for the pure LAPCFB as a reburn fuel: (a) 

OHTC (U) and (b) Ratios of the OHTC with and without ash deposition. 
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The ratios of OHTC(ash) to OHTC(no ash) for LAPCFB were high compared to those of 

TXLC. This is explained as follows: The fuel feed rate for LAPCFB was almost 8 % more 

compared to TXLC to generate the same heat input; this coupled with increased fuel ash content 

results in ash loading almost 55% more compared to TXLC as shown in Table 5.3. The increased 

mass concentration in gas phase increased the radiation heat transfer rate. Thus the initial OHTC 

was much higher compared to the case for coal. 

 

7.1.5. Blends of TXLC and LAPCFB 

Several fuel blends (90:10 TXLC:LAPCFB, 70:30 TXLC:LAPCFB, 90:10 TXLC:HAPCFB, 

and 70:30 TXLC:HAPCFB) were tested. The HAPCFB has the highest amount of ash (53.85%) 

among the tested fuels. Due to safety reasons, combustion of TXLC:HAPCFB blends was tested 

over a shorter time period than that of TXLC:LAPCFB blends. The reactor clogged when FB 

was burnt over longer periods, particularly with combustion of pure HAPCFB, and its molten 

behavior was observed under the reburn nozzles shown in figure 7.8. More black slag, heavier 

ash depositions, and higher thermal resistances for 70:30 blends than those of 90:10 blends are 

expected for both types of FB, LAPCFB and HAPCFB. It is likely that the solid fuel with more 

ash contents causes heavier ash deposition. Since the short testing period of TXLC:HAPCFB 

blends, not much ash depositions were formed. The top HEX was covered by the thin layer of 

the black slag while other HEXs were mostly covered by the ash powder layer. More black slag 

and heavier ash depositions for 70:30 blends than for 90:10 blends were observed. 
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Figure 7.8. Molten behavior under the reburn burner with firing HAPCFB. 

 

 

In figures 7.9 (a) and (b), the OHTC (U) of the top HEX of all fuel blends was reduced while 

the OHTCs of other HEXs were increased. The decrease of UTop occurred since the thin layer of 

the black slag had less thermal conductivity than that of the powdered ash layer. The ratios of 

OHTC(ash) to OHTC(no ash) were more than 1 for the HEXs in the initial period due to heat 

radiation. The average OHTC (OHTCavg) is defined as the mean value of the obtained OHTCs 

over time. The OHTCavg for fuel blends are listed in Table 7.1. Most of the OHTCavg were lower 

than those of no ash cases except the case of the bottom HEX of 70:30 TXLC:HAPCFB (0.049 

W/m2·K·min). Since the short testing period of TXLC:HAPCFB blends, the result might not be 

enough to evaluate properly. The OHTCavg of the top and bottom HEXs of 70:30 

TXLC:LAPCFB were as lower than those of 90:10 TXLC:LAPCFB. It was caused by higher 

thermal resistances and more ash depositions during combustion of 70:30 TXLC:LAPCFB. It is 

found that the effect of ash formation on OHTC depends on the proportion of FB in reburn fuels. 
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Figure 7.9. Overall heat transfer coefficients (OHTC) for fuel blends: (a) OHTC (U) of 

TXLC:LAPCFB and (b) OHTC (U) of TXLC:HAPCFB. 
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Table 7.1. Average OHTC rates [W/m2·K·min] for 90:10 and 70:30 coal:FB blends. 
HEX 

Location 
No ash 

deposition 
90:10 

TXLC:LAPCFB 
70:30 

TXLC:LAPCFB 
90:10 

TXLC:HAPCFB 
70:30 

TXLC:HAPCFB 

Top 0.026  -0.020 -0.058 - - 

Middle 0.012 - - 0.005 0.010 

Bottom 0.042 0.041 0.009 0.032 0.049 

 

 

7.1.6. Burnt Fraction and Combustible Loss 

As opposed to the pilot-scale DOE-NETL facility (500,000 BTU/h) [25] and more expensive 

operation over several hours, the current bench-scale (100,000 BTU/h) facility operates over 

shorter duration (2 – 3 hours) due to the limited feeder capacity. Thus ash depositions on HEXs 

were not formed enough to cause the slagging behavior. The proportions of moisture, ash, and 

combustibles for the reburn fuels are listed in Table 5.1. Combustibles in fuels are 79.47% for 

LAPCFB, 81.41% for TXLC and 35.12% for HAPCFB on a dry basis. In order to determine the 

combustible loss, ash were collected from four different places; surfaces of top, middle, and 

bottom air cooled HEXs and the ash port at the furnace bottom. After the furnace completely 

cooled down, the HEXs were detached from the boiler burner, and ash samples from the surfaces 

of HEXs and from the ash port at the furnace bottom were scraped off and sent for analysis. 

During the clean-up process of the HEXs, it was found that the bottom HEX in the low 

temperature zone was easier to be cleaned compared to the upper HEXs. The combustible loss 

was determined on a dry basis using the results of the ash analysis [48]. The combustible loss is 

defined as the ratio of unburnt combustibles in the ash to initial combustibles in the fuel. The 

burnt fraction (BF) is defined as the ratio of combustibles burnt to the initial combustible mass. 

The ash deposits on the HEX surfaces commonly consist of small, sticky particles. Large ash 

particles may not adhere to the HEX surface due to impaction and bouncing off of surfaces. Due 
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to the round cross-section of the HEXs, the ash deposits build up around the top area of the 

HEXs which created temperature non-uniformity around the HEXs. Not all analysis results were 

presented due to some samples being too small for analysis. The results are listed in Table 7.2 

which shows that almost 0% combustible loss and 100% BF were detected for all HEXs since 

the particles on the surfaces of the HEXs kept burning during combustion. Detailed elemental 

analysis of ash is presented in Table 5.4. The contents of alkali metals (sodium, Na and 

potassium, K) can make the ash more sticky. In current fouling tests, more ash depositions were 

formed during FB combustion than coal combustion. Since higher amounts of alkali metals in 

ash of HAPCFB and LAPCFB, more ash sticks on the surfaces of the HEXs. 

Unlike the combustible loss obtained from the samples on the HEXs, the combustible loss 

obtained from the bottom ash collected from the ash port was somewhat high; 50.21% for pure 

TXLC, 11.1% for pure LAPCFB, 32.65% for 90:10 TXLC:LAPCFB, 12.3% for 70:30 

TXLC:LAPCFB, 42.44% for 90:10 TXLC:HAPCFB, 17.45% for 70:30 TXLC:HAPCFB. The 

lighter fly ash particles in the flue gas flowed into the exhaust duct, and only heavy particles 

dropped into the water in the ash port. Thus the bottom ash contained most of heavy particles, 

and the combustible loss calculated by the analysis of heavy ash particles can be high. For the 

accurate estimation of the combustible loss, both lighter fly ash and heavier bottom ash produced 

during the same period should be analyzed. It is found that the combustible loss decreases with 

the increase of the proportion of FB in reburn fuels. It is because FB has higher volatile matters 

(almost 80% on a DAF basis), and also its particle sizes are smaller than TXLC. Thus higher BF 

was obtained when more FB was present in reburn fuels. In Table 7.2, the BF was much higher 

for LAPCFB and 70:30 TXLC:LAPCFB. The BF of LAPCFB blends was higher than that of 

HAPCFB blends due to smaller particles in LAPCFB. 
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Table 7.2. Ash analysis results of FB fuels for burnt fraction (BF) and combustible loss. 
Fuel Ash from Ash (w%) Combustibles 

(w%) 
Burnt Fraction, 

BF (w%) 
Combustible 
Loss (w%) 

Top HEX 100 0 100 0 

Mid HEX 100 0 100 0 

Bot HEX 100 0 100 0 
Pure TXLC 

Ash Port 31.26 68.74 49.79 50.21 

Top HEX 100 0 100 0 

Mid HEX 99.94 0.06 99.99 0.01 

Bot HEX 99.88 0.12 99.97 0.03 
90:10 

TXLC:LAPCFB 

Ash Port 41.47 58.53 67.35 32.65 

Top HEX 100 0 100 0 

Mid HEX 100 0 100 0 

Bot HEX 99.90 0.10 99.98 0.02 
70:30 

TXLC:LAPCFB 

Ash Port 65.85 34.15 87.70 12.30 

Top HEX 99.91 0.09 99.98 0.02 

Mid HEX 99.49 0.51 99.87 0.13 

Bot HEX 99.39 0.61 99.84 0.16 
Pure LAPCFB 

Ash Port 69.94 30.06 88.90 11.10 

Top HEX - - - - 

Mid HEX 100 0 100 0 

Bot HEX 100 0 100 0 
90:10 

TXLC:HAPCFB 

Ash Port 41.61 58.39 57.56 42.44 

Top HEX - - - - 

Mid HEX 100 0 100 0 

Bot HEX 100 0 100 0 
70:30 

TXLC:HAPCFB 

Ash Port 73.38 26.62 82.55 17.45 

Top HEX 100 0 100 0 

Mid HEX 99.89 0.11 99.80 0.20 

Bot HEX 99.61 0.39 99.28 0.72 
Pure HAPCFB 

Ash Port - - - - 
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7.2 Fouling Using Water Cooled HEXs 

In the previous section, air cooled HEXs were used for the fouling studies for the following 

reasons; 1) The temperature rise is much higher with air compared to water for the same mass 

flow due to the reduced specific heat and reduced error in temperature values, 2) Because of the 

high temperature rise, the air temperature is much hotter with air cooling and, as such, the 

average temperature of an ash layer will increase in a short amount of time so that slagging 

tendency, if any, can be detected, and 3) Results of NOx reduction with hotter ash layers on the 

air cooled HEXs were obtained as a function of the ERRBZ during the fouling tests. In this section, 

however, water (about 295 K) was used as a cold fluid in HEXs, and the change is expected to 

cause higher heat transfer rates but lower temperatures of the hot and cold fluids than those for 

air cooled HEXs because of the higher specific heat of water. Fouling tests were performed only 

at ERRBZ = 1.05 to produce more ash particles and stabilize test conditions. The parametric 

studies include various types of the reburn fuel, but at 30% reburn heat input and 45° upward 

reburn injection in the symmetric configuration. The tested reburn fuels were TXLC, LASSDB, 

90:10 TXLC:LASSDB, and 80:20 TXLC:LASSDB. 

 

7.2.1. Temperature Profile 

In figure 7.10, inlet and exit temperatures of both hot flue gas and water are presented as 

TXLC was fired as a reburn fuel. The gas temperatures at inlets and exits kept increasing as a 

function of time due to the combustion of the reburn fuel. The differences between the inlet and 

exit temperatures were 10 to 15 K, and they were steady with time. The ranges and behaviors of 

gas temperatures for 90:10 TXLC:LASSDB and 80:20 TXLC:LASSDB were very similar to 

those for TXLC in figure 7.10 (a). The overall ranges of gas temperatures for LASSDB were 50 

to 150 K less than those for TXLC depending on the HEX locations. Note that all of the flue gas 
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temperatures measured during tests for water HEX cases are about 100 to 200 K less than those 

for air HEX cases in the similar conditions. 

In figure 7.10 (b), the water temperatures decreased since the growth of ash depositions on 

the surface of HEXs. The temperatures of the cold fluid (water) were much lower than those of 

the cold fluid (air) because of the high specific heat of water compared to air: between 300 and 

330 K for water HEX cases while 650 and 1340 K for air HEX cases. There exit two distinct 

behaviors of water temperature difference (Tw,exit - Tw,in) at the inlets and exits: increasing and 

decreasing. The water temperatures show the increasing temperature difference condition for 

each HEX in figure 7.10 (b). It causes the OHTC to increase while the decreasing temperature 

difference causes the OHTC to decrease. Because of the decreased heat input, the latter behavior 

was observed for the top HEX of the 80:20 TXLC:LASSDB case in figure 7.11. Results in 

figures 7.10 (a) and (b) indicate that heat transfer rate from the hot gas to the HEXs is very high 

due to colder water temperature; further the water temperatures for all fuels typically decreased 

with time, and the ranges of the water temperatures were between 300 and 330 K depending on 

the HEX locations. Prior to water flows into the HEXs, the HEXs are very hot. As the water flow 

starts, the water temperature is initially high. And then as time progresses, the HEX temperature 

starts decreasing coupled with decreasing the water temperature due to the growth of the ash 

depositions. 
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Figure 7.10. Temperature distribution at inlets and exits for TXLC (ash loading: 8.02 kg/GJ): (a) 

Flue gas temperature and (b) Water temperature in HEXs (Top: top HEX, Mid: middle HEX, 
and Bot: bottom HEX). 
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Figure 7.11. Temperature distribution at inlets and exits of water HEXs for 80:20 TXLC:LASSD 

(ash loading: 8.74 kg/GJ). 
 

 

7.2.2. LMTD and OHTC 

Log mean temperature differences (LMTD) were calculated using Eq. (5.11) for the top, 

middle and bottom water HEXs for cases firing TXLC as a reburn fuel, and the results are 

presented in figure 7.12. Because both increasing gas temperatures and decreasing water 

temperatures as a function of time as shown in figure 7.10, the LMTD increased, and the 

increasing rates were relatively similar for all cases. Unlike the water HEX cases, the decrease of 

the LMTD was observed for the air HEX cases because both gas and air temperatures increased. 

The LMTD for the water HEX cases was three times larger than that for the air HEX cases. The 

behaviors of the LMTD for 90:10 TXLC:LASSDB and 80:20 TXLC:LASSDB were very similar 

to those for TXLC. The overall variations of the LMTD for LASSDB were 50 to 100 K less than 

those for TXLC depending on the HEX locations. 
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Figure 7.12. Log mean temperature differences (LMTD) for water HEXs using TXLC as a 

reburn fuel. 
 

 

 
Figure 7.13. Ash depositions on bottom HEXs for several reburn fuels. 
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In figure 7.13, the extent of ash depositions on the bottom HEX for several reburn fuels were 

presented. The HEX was mostly covered by a powdered ash layer, and the ash layer was almost 

uniformly deposited on the HEX. Some of ash depositions dropped off from HEX surfaces when 

the HEXs were detached from the boiler burner at the end of experiments. Though the missing 

areas of ash layers were observed, the extent of ash depositions for LASSDB was still higher 

than the others. It is likely that the fuel with higher ash contents causes heavier ash deposition. 

Unlike the ash depositions on middle and bottom HEXs, a thin layer of solidified slag was 

formed on the surfaces of the top HEXs. 

Overall heat transfer coefficients (OHTC) were calculated using Eq. (5.15) and presented in 

figure 7.14 for the bottom HEX with ash depositions using several reburn fuels. The typical 

range of the OHTC in the steady-state condition is between 10 and 100 W/m2·K as listed in 

Table 5.9. In the beginning without ash depositions, the range of the OHTCbot was between 100 

and 140 W/m2·K which was little higher than the result of the steady-state condition. During the 

ash buildup, the OHTCbot decreased for LASSDB but increased for TXLC. For 90:10 

TXLC:LASSDB and 80:20 TXLC:LASSDB the OHTCbot is almost flat. There are two 

competing effects: The increasing temperature causes the increase in OHTC, and the ash 

deposition causes the decrease in OHTC. For TXLC, the ash loading (8.02 kg/GJ) is small, so 

the effect of the gas temperature is dominant. For LASSDB, however, the effect of ash 

deposition is dominant because the ash loading (11.62 kg/GJ) is higher. The increase of the 

OHTC with the growth of ash depositions was observed since heat transfer rates to HEXs kept 

increasing during fuel combustion under the transient condition in which the gas temperatures 

increased. Further the high amounts of alkali metals (sodium, Na and potassium, K) in the ash of 

LASSDB caused the ash more sticky. 
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Figure 7.14. Overall heat transfer coefficient (OHTCbot) for the bottom HEX in the cases of ash 

depositions using several reburn fuels. 
 

 

Results of the OHTC were presented in figures 7.15 for the middle HEX and figure 7.16 for 

the top HEX in the cases of ash depositions. In the beginning without ash depositions, the 

OHTCmid and OHTCtop ranged from 70 to 95 W/m2·K and 65 to 105 W/m2·K, respectively, 

which were close to the results of the steady-state condition as listed in Table 5.9. During the ash 

deposition, all of the OHTCmid increased in figure 7.15 while both increase and decrease of the 

OHTCtop were observed in figure 7.16. During the reburn tests in the presence of ash depositions, 

it was generally observed as OHTCbot > OHTCmid > OHTCtop for each fuel. This is due to two 

different ash deposition behaviors: solidified slag and powdered ash depending on the 

combustion temperature. The thin layer of solidified slag was formed on the top HEXs while the 

powdered ash layer was formed on the middle and bottom HEXs. It was found the thin layer of 

the solidified slag had less thermal conductivity than that of the powdered ash layer. 
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Figure 7.15. Overall heat transfer coefficient (OHTCmid) for the middle HEX in the cases of ash 

depositions using several reburn fuels. 
 
 
 

 
Figure 7.16. Overall heat transfer coefficient (OHTCtop) for the top HEX in the cases of ash 

depositions using several reburn fuels. 
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7.2.3. Ratio of OHTC 

According to the results presented in figures 7.14 to 7.16, both increase and decrease of the 

OHTC were observed. Its decrease resulted in the effect of ash deposition; however, its increases 

occurred since the increased of the heat transfer rates to water HEXs during the transient and 

short-time operation. In order to observe the effect of the ash deposition, the ratio of the OHTC 

in the presence of ash depositions to the OHTC in the absence of ash depositions was determined. 

The results are presented in figures 7.17 to 7.19, and the OHTC ratios of all cases decreased with 

time. It indicated the thickness of the ash layer on HEXs increased with time, so that heat 

transfer to the HEXs decreased with the growth of ash depositions. The overall ranges of the 

OHTC ratios were TXLC > 90:10 TXLC:LASSDB > 80:20 TXLC:LASSDB > LASSDB. It 

resulted in higher ash loading in LASSDB than TXLC caused more ash deposition. 

 

 
Figure 7.17. Ratios of OHTCbot (ash cases) to OHTCbot (no ash cases) for several reburn fuels. 
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Figure 7.18. Ratios of OHTCmid (ash cases) to OHTCmid (no ash cases) for several reburn fuels. 

 
 
 

 
Figure 7.19. Ratios of OHTCtop (ash cases) to OHTCtop (no ash cases) for several reburn fuels. 
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7.2.4. Burnt Fraction and Combustible Loss 

The proportions of moisture, ash, and combustibles for the reburn fuels are listed in Table 

5.1. Proximate analysis shows that the combustibles in LASSDB and TXLC are very similar on 

a dry basis: 80.03% for LASSDB and 81.41% for TXLC. Burnt fraction (BF) and combustible 

loss were determined on a dry basis and presented in Table 7.3. The results show 97 to 100% BF 

and 0 to 3% combustible loss for all HEXs at ERRBZ = 1.05. High BF was found in the fuel-rich 

condition due to the fuel particles on the HEX surfaces kept burning during combustion. Heavier 

ash depositions were formed during DB combustion than coal combustion. The BF results of the 

bottom ash were low since the bottom ash contained most of the heavy and big particles which 

lowered the combustion efficiency. It is found that the BF increased with an increase of the DB 

portion in reburn fuels. It is because DB has higher volatile matters (almost 80% on a DAF 

basis), and its particle sizes are smaller compared to TXLC. 

 

Table 7.3. Ash analysis of DB fuels for burnt fraction (BF) and combustible loss. 
Fuel Ash Location Burnt Fraction, BF (w%) Combustible Loss (w%) 

LASSDB Top HEX 97.82  2.18  
LASSDB Mid HEX 97.84  2.16  
LASSDB Bot HEX 97.06  2.94  
LASSDB Bottom Ash 81.84  18.16  

80:20 TXLC:LASSDB Top HEX 98.06  1.94  
80:20 TXLC:LASSDB Mid HEX 98.49  1.51  
80:20 TXLC:LASSDB Bot HEX 98.32  1.68  
80:20 TXLC:LASSDB Bottom Ash 76.94  23.06  
90:10 TXLC:LASSDB Top HEX 99.69  0.31  
90:10 TXLC:LASSDB Mid HEX 99.44  0.56  
90:10 TXLC:LASSDB Bot HEX 99.20  0.80  
90:10 TXLC:LASSDB Bottom Ash 71.55  28.45  

TXLC Top HEX 98.56  1.44  
TXLC Mid HEX 98.50  1.50  
TXLC Bot HEX 97.83  2.17  
TXLC Bottom Ash 68.45  31.55  
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8. RESULTS ON MERCURY REDUCTION USING A FLOW REACTOR 

 

In this section, the result of Hg emission from the bench-scale reburn boiler is evaluated, and the 

fundamental study of Hg oxidation or reduction using a flow reactor is investigated in 

homogeneous and heterogeneous conditions. The study of Hg reduction is the supplemental 

study to the biomass reburning. 

 

 

8.1 Hg Reduction During Coal Combustion 

Emission controls of mercury (Hg) using coal and biomass as fuels during co-firing were 

previously investigated, and the results were reported elsewhere [104]. The concentrations of 

gaseous total mercury (HgT) and elemental mercury (Hg0) were measured, and the amounts of 

gaseous oxidized forms (Hg2+) were calculated as the difference of HgT and Hg0. Particle-bound 

forms (Hgp) were not collected or analyzed in the study. Table 8.1 shows Hg emissions for coal 

combustion as a function of the equivalence ratio (ER). These results were adopted from 

Reference [104]. The typical range of HgT from the coal combustion was about 1.5 to 2.0 μg/m3, 

and approximately 43 to 62% of HgT was oxidized. The results of blending fuels of coal and DB 

reported in Reference [104] increased the chlorine (Cl) content in the fuel and reduced Hg 

emissions during co-firing. It was suggested the presence of high ash content in the fuel provided 

great suitable site for the Hg oxidation. Large variations of HgT concentrations were observed 

during fuel-lean combustion while small variations were found at stoichiometry and fuel-rich 

conditions. It might be attributed that unburnt carbon adsorbed Hg during fuel-rich conditions 

while there is negligible unburnt carbon for the fuel-lean combustion. 
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Table 8.1. Hg emissions for coal combustion using a boiler. 

Fuel Equivalence 
Ratio, ER 

Total mercury, 
HgT, [μg/m3] 

Elemental mercury, 
Hg0, [μg/m3] 

Oxidized mercury, 
Hg2+, [μg/m3] 

0.8 1.8 1.0 0.8 

0.9 3.1 1.2 1.9 

1.0 1.9 0.8 1.1 

1.1 1.8 0.8 1.0 

TXLC 

1.2 1.7 0.7 1.0 

0.8 1.6 0.9 0.7 

0.9 1.8 0.7 1.1 

1.0 1.5 0.6 0.9 

1.1 1.6 0.8 0.8 

WYC 

1.2 1.4 0.8 0.6 
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8.2 Homogeneous Hg Oxidation 

The Hg emissions using the coal-fired boiler were very low as shown in Table 8.1, and 

showed high experimental uncertainties because of very small amounts of Hg [ppb]. In order to 

understand the behavior of Hg oxidation with chlorinated compound, a fundamental study of the 

Hg chemistry was performed using a flow reactor in the homogeneous phase. Higher amount of 

Hg was simulated in the plug flow reactor (PFR) in order to reduce the errors of measurements 

and the experimental uncertainty. Several mixtures of chlorinated species, NO and O2 were 

selected as shown in Table 4.4 and evaluated in the current study. The Hg compound formed 

includes HgCl, HgCl2 and HgO. Typically the dominant oxidized form of Hg is HgCl2. In the 

current study, only Hg0 is measured; thus, the Hg oxidation is defined as the ratio of the amount 

of Hg0 removed to the amount of Hg0 supplied. 

 

8.2.1 Cases I (NO), II (O2), and III (NO + O2) 

The effects on Hg oxidation in the presence of NO (Case I), O2 (Case II), and NO + O2 (Case 

III) in the gas stream of N2 were studied. The baseline concentration of Hg0 was between 61 and 

63 ppb at the reactor temperature of about 25ºC. Chlorine species such as HCl and Cl2 were not 

used for these cases. The results of Hg emissions and oxidations were listed in Table 8.2. At 

700ºC, the concentration of NO varied from 0 to 300 ppm for Case I and the concentration of O2 

varied from 0 to 5% for Case II. In the presence of both NO and O2 for Case III, the NO 

concentration varied 0 to 300 ppm with the constant concentration of O2 (3%). The residence 

time (RT) calculated at 700ºC was 0.16 s for all cases. The results shows that minor oxidations 

occurred for all cases, and the extents of Hg oxidation were less than 1% with an increase of NO 

or O2 concentrations. 
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Table 8.2. Hg oxidation results for Cases I, II, and III with 0.16 s RT at 700ºC. 
Case I  

0 to 300 ppm NO 
Case II  

0 to 5% O2 
Case III 

3% O2 + 0 to 300 ppm NO 

NO [ppm] Hg oxidation 
[%] O2 [%] Hg oxidation 

[%] NO [ppm] Hg oxidation 
[%] 

0 0.0 0 0.0 0 0.0 

50 0.6 1 0.4 50 0.6 

100 0.6 3 0.6 100 0.4 

200 0.6 5 0.8 200 0.6 

300 0.4 - - 300 0.6 
 

 

 
Figure 8.1. Hg emissions as a function of temperatures for Cases I (NO), II (O2), and III (NO + 

O2) with 0.16 s RT (Baseline Hg0 = 61 – 63 ppb). 
 

 

Hg emissions as a function of the reactor temperature for Cases I, II and III between 700 to 

1200ºC are presented in figure 8.1. The effect of the temperature on Hg oxidation was within 

experimental scatter. The small increases in Hg emissions at 1200ºC were caused by the release 
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of Hg0 deposited in the metal connectors or the transport tubes near the flow reactor. For the 

conditions in the absence of HCl, the homogeneous Hg oxidation in reactions (8.1) and (8.2) 

barely took place up to 1200ºC with NO concentrations up to 300 ppm or with O2 concentrations 

up to 5%. Though the thermal decomposition of O2 and NO typically occurs at high 

temperatures, the result shows minor effects on Hg oxidation below 1200ºC. The bond energy of 

O2 and NO is known as 498 and 607 MJ/kmol, respectively. It was found that both NO and O2 

hardly reacted with Hg0 directly. 

 

HgOproducesNOHg o +            (8.1) 

HgOproducesOHg o
2+             (8.2) 

 

8.2.2 Case IV (HCl) 

Hg oxidation in the presence of HCl in the gas stream of N2 was investigated. Table 8.3 

shows the results of Hg emissions and oxidations as a function of the HCl concentration at 700ºC. 

The different RTs were estimated because of different flow rates. The level of HCl varied 0 to 90 

ppm for the case with the total flow rate of 1100 SCCM, and 0 to 150 ppm HCl for the case with 

the total flow rate of 700 SCCM. In the case of 1100 SCCM, no oxidation was observed up to 70 

ppm HCl, and about 17% Hg oxidation was found with 90 ppm HCl. For the case of 700 SCCM, 

about 14% Hg oxidation was found with 90 ppm HCl, and about 30% Hg oxidation was 

measured for HCl concentrations higher than 110 ppm. For both cases, Hg oxidation started with 

the addition of 90 ppm HCl which represented about 1.1 × 10-8 moles of HCl. The result is very 

similar to the results obtained by Ghorishi et al. [112]; the gas-phase oxidation by HCl took 

place at temperatures higher than 700ºC with HCl in the range of 100 to 200 ppm. According to 
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the results mentioned above, a certain amount of HCl is required to cause Hg oxidations. In the 

current cases, more than 90 ppm or 1.1 × 10-8 moles of HCl was required when no other gas 

presented in the system but HCl. The current result also shows the Hg oxidation increased with 

an increase of the concentration of HCl. The reactions of Hg + HCl were reported by Hall et al. 

[80], and their results presented significant increases in Hg oxidation with HCl concentrations 

from 0 to 150 ppm; however, oxygen presented in their stream. The Hg + HCl case by Hall et al. 

[80] is compared with the case of Hg + HCl + O2 (Case VI) in the current study. 

 

Table 8.3. Hg oxidation results for Case IV (HCl) at 700ºC (Baseline Hg0 = 62.7 – 62.8 ppb). 
700 SCCM with 0.26 s RT at 700ºC 1100 SCCM with 0.16 s RT at 700ºC 

HCl [ppm] Hg measured 
[ppb] 

Hg oxidation 
[%] HCl [ppm] Hg measured 

 [ppb] 
Hg oxidation 

 [%] 
0 62.8 0.0 0 62.7 0.0 

50 62.5 0.4 30 63.1 0.0 

90 53.9 14.2 50 63.4 0.0 

110 44.5 29.1 70 63.9 0.0 

130 44.7 28.7 90 51.8 17.3 

150 44.0 29.9 - - - 
 

 

Figure 8.2 shows effects of temperature on Hg oxidation in the presence of 50 ppm HCl for 

temperatures from 700 to 1200ºC, the RT of 0.16 s and the flow rate of 1100 SCCM. The results 

show the temperature had a significant effect on the Hg oxidation. Though no oxidation occurred 

below 700ºC, the Hg emissions decreased with an increase in the temperature higher than 700ºC, 

thus, more Hg oxidation took place at higher temperatures: 17% oxidation (52.7 ppb) at 900ºC, 

24% (48.3 ppb) at 1000ºC, 55% (28.5 ppb) at 1100ºC, and 88% (7.9 ppb) at 1200ºC. The results 

show that not all Hg0 was oxidized, and some of Hg0 and HCl still remained in the system. 
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Figure 8.2. Hg emissions in the presence of 50 ppm HCl for Case IV in the conditions with the 

RT of 0.16 s and the flow rate of 1100 SCCM. 
 

 

The reactions for Hg oxidations are summarized in Table 8.4. Since HCl was only chlorine 

species in the system in Case IV, the direct oxidation in reactions (8.3) and (8.4) should be 

considered. It is, however, reported that the reaction (8.3) is slow and unlikely to be important 

[80, 105, 112]. Because of the low production of HgCl by the reaction (8.3), the reaction (8.4) 

becomes unimportant for Case IV. Therefore, a possible mechanism of Hg oxidations in Case IV 

was that the thermal decomposition of HCl (bond energy: 432 MJ/kmol) produced chlorine 

atoms (HCl  H + Cl). The bond energy is less than that for O2 and NO. The thermal 

decomposition of HCl was investigated at temperatures between 2500 and 4600 K [133, 134]; 

however, it is not well understood at temperatures lower than 2000 K. Using a plasma generator, 

the decomposition of HCl above 2000 K was achieved at least 95% on a mass basis by cooling 

the constituents to form H2 and Cl2 in the system downstream [135], and it was found that the 
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decomposition rate of HCl increased with an increase of the temperature. Radicals (i.e., atoms) 

are usually more reactive than stable species. Thus the H atoms react with HCl to produce more 

chlorine atoms (HCl + H  H2 + Cl) [136]. Note that the bond energy of H2 is 436 MJ/kmol 

comparable to HCl. The Cl atoms or species derived from HCl react with Hg species as shown in 

reactions (8.5) to (8.8). The reaction (8.5) is extremely rapid while the reactions (8.6) to (8.8) are 

slow. 

 

Table 8.4. Detailed kinetic mechanisms, k = ATn exp(-Ea/R·T). 
Reaction # Reaction A [cm3/gmol·s] n Ea [J/mol] Ref. 

8.3 HHgClHClHgo +→+  4.94 × 1014 0 332000 [136] 

8.4 HHgClHClHgCl +→+ 2  4.94 × 1014 0 90000 [136] 

8.5 HgClClHg o →+  2.4 × 108 1.4 -60300 [136] 

8.6 ClHgClClHgo +→+ 2  1.39 × 1014 0 142400 [136] 

8.7 2HgClClHgCl →+  2.19 × 1018 0 13000 [136] 

8.8 ClHgClClHgCl +→+ 22  1.39 × 1014 0 4200 [136] 

 

 

In Case IV, since no Hg oxidation was found below 700ºC and high Hg oxidations above 

900ºC, it is suggested that the thermal decomposition of HCl occurred above 700ºC. The Hg 

oxidation was increased with an increase in temperatures because the thermal decomposition of 

HCl was increased with temperatures higher than 700ºC. The results in figure 8.2 show that HCl 

is very effective for Hg oxidation above 700ºC. According to the results, it is also suggested that 

Cl and Cl2 are derived from HCl and key components in Hg oxidation during coal combustion. 

Because the reactions between HCl and other gas species during coal combustion are important, 

further investigations have been conducted as shown in the next section. 
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8.2.3 Case V (HCl + NO) 

It is known that NO inhibits the homogeneous Hg oxidation by chlorine species when some 

other gas components (i.e. CO, CO2, SO2, H2O, O2, etc.) are presented in the gas stream [8]. In 

the current study, the effects of HCl + NO on Hg oxidation in the absence of other gas 

components were investigated in the conditions with the RT of 0.16 s and the flow rate of 1100 

SCCM. The results of Hg emissions and oxidations are presents in Table 8.5 as a function of the 

gas concentration at 700ºC. In Case V (HCl + NO), the concentration of NO varied 0 to 300 ppm 

with 50 ppm HCl. The addition of 50 ppm NO increased Hg oxidation to about 35%; however, 

the Hg oxidation decreased with NO concentrations higher than 50 ppm. It indicated that Hg 

oxidation increased when NO was first added into the system; however, its high concentration 

inhibited Hg oxidation.  

 

Table 8.5. Hg oxidation in Cases V (HCl + NO) with the RT of 0.16 s at 700ºC (Baseline Hg0 = 
62.4 ppb). 

NO Hg measured at exit Hg oxidation 

0 ppm 62.4 ppb 0.0 % 

50 ppm 40.5 ppb 35.2 % 

100 ppm 42.7 ppb 31.6 % 

200 ppm 42.3 ppb 32.2 % 

300 ppm 42.9 ppb 31.3 % 
 

 

Figure 8.3 presents Hg emissions as a function of temperatures for Case V with 50 ppm HCl 

and 300 ppm NO. For temperatures up to 600ºC, the changes in the concentration of Hg0 were 

less than about 3%. In contrast, high oxidations of Hg were found to be about 31% (43.3 ppb) at 

800ºC, 50% (31.6 ppb) at 1000ºC, and 86% (8.5 ppb) at 1200ºC. The Hg oxidation significantly 

increased with an increase in temperatures when the temperatures are higher than 600ºC. 
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Figure 8.3. Hg emissions for Cases V (HCl + NO) in the conditions with the RT of 0.16 s and the 

flow rate of 1100 SCCM (Baseline Hg0 = 62.7 ppb). 
 

 

The comparison results of Cases V (HCl + NO) and IV (HCl) show that Hg oxidation started 

between 600 and 800ºC in Case V which was a lower temperature range than that of Case IV 

(700 and 900ºC). Since the thermal decomposition of HCl occurred at temperatures higher than 

700ºC, it stimulated Hg oxidation first. Higher oxidations are found for Case V than Case IV; 

therefore, the addition of the NO concentration (300 ppm) in Case V promoted the Hg oxidation. 

It is probably because the reaction (8.9) produces Cl atoms and reduces some of NO emissions. 

Therefore, the production of Cl atoms was more in Case V (HCl + NO) than Case IV (HCl). The 

thermal decomposition of HCl and the production of Cl atoms by the NO addition caused more 

Hg0 to be oxidized compared to Case IV. 

 

ClHNONOHCl +→+     (8.9) 
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8.2.4 Case VI (HCl + O2) 

The effects of O2 on Hg oxidation in the presence of 50 ppm HCl in the gas stream of N2 

were studied in the conditions of the RT of 0.16 s and the flow rate of 1100 SCCM. Table 8.6 

shows the results of Hg emissions and oxidations as a function of the gas concentration at 700ºC.  

In Case VI (HCl + O2), the level of O2 varied 0 to 5% with 50 ppm HCl. Approximately 34% Hg 

oxidation was found by the addition of 1% O2. The Hg oxidation was increased with an increase 

of the concentration of O2. About 40% oxidation was found in the presence of 5% O2. Hg 

oxidations by the addition of various HCl concentrations with 10% O2 were studied [80]. The 

results showed about 30% oxidation in the presence of 50 ppm HCl and 10% O2 at 500ºC. The 

current results showed higher Hg oxidation such as 40% in the presence of 50 ppm HCl and 5% 

O2 at 700ºC. The higher oxidation was reasonable due to the temperature was higher for the 

current case.  

 

Table 8.6. Hg oxidation in Cases VI (HCl + O2) with the RT of 0.16 s at 700ºC (Baseline Hg0 = 
61.7 ppb). 

O2 Hg measured at exit Hg oxidation 

0 % 61.7 ppb 0.0 % 

1 % 40.6 ppb 34.2 % 

3 % 38.0 ppb 38.3 % 

5 % 36.9 ppb 40.1 % 
 

 

Figure 8.4 presents the results of Hg emissions for Case VI as a function of the temperature. 

Hg oxidations increased with an increase of the temperature: about 12% (55.8 ppb) at 400ºC, 

18% (51.9 ppb) at 600ºC, 36% (40.3 ppb) at 800ºC, 54% (29.3 ppb) at 1000ºC, and 92% (5.2 

ppb) at 1200ºC. Some HgO(s) deposits appeared in the entrance tube of the Hg vapor monitor 

indicating the contribution of HgO in Hg oxidation. 
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Figure 8.4. Hg emissions for Cases VI (HCl + O2) in the conditions with the RT of 0.16 s and the 

flow rate of 1100 SCCM (Baseline Hg0 = 63.3 ppb). 
 

 

The comparison of results for Cases IV (HCl) and VI (HCl + O2) shows that the high Hg 

oxidation first appeared at 400ºC in Case VI which was lower temperature than that of Case IV 

(900ºC). Therefore, the reactions between HCl and O2 in Case VI took place at temperatures 

higher than 400ºC, and the thermal decomposition of HCl helped the Hg oxidation at the 

temperatures higher than 700ºC. The results suggested that the reaction between HCl and O2 

expressed in the reaction (8.10) produced chlorine species and OH radicals, and the reaction 

(8.11) participated to produce Cl atoms. The reaction (8.11) is very fast; A is 2.71 × 107 

cm3/gmol·s and Ea is -921 J/mol [136]. Therefore, the production of chorine species is expected 

more in Case VI (HCl + O2) than both Cases V (HCl + NO) and IV (HCl). The production of 

HgO in Case VI contributed to the increase of the Hg oxidation as shown in reaction (8.12). The 

direct reaction by HCl in reaction (8.13) was also favorable to Hg oxidation [80]. About 30% 
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more oxidation at 1000ºC and 4% more oxidation at 1200ºC were found for Case VI than Case 

IV. Both the thermal decomposition of HCl and the reactions between HCl and O2 increased Cl 

atoms, and thus more Hg oxidation. The results show the addition of O2 shifted the reaction 

temperature lower from 900 to 400ºC. The Hg0 appears to be oxidized when the reactor 

temperature reached 400ºC for Case VI while 800ºC for Case V. The Hg oxidations in the range 

of temperatures investigated were higher for Case VI than Case V. Due to high Hg oxidation and 

lower reaction temperatures, it was concluded that O2 was more effective to produce Cl atoms 

than NO. 

 

OHClOOHCl +→+ 2      (8.10) 

OHClOHHCl 2+→+      (8.11) 

ClHgOClOHg +→+0      (8.12) 

OHHgClOHClHg 222
0 2242 +→++               (8.13) 

 

8.2.5 Case VII (HCl + NO + O2) 

The study of Hg oxidation in the presence of HCl, NO and O2 were performed for Case VII. 

Figure 8.5 shows Hg emissions as a function of time for the temperatures from ambient (25ºC) to 

1200ºC in the presence of 50 ppm HCl, 300 ppm NO and 3% O2 with the RT of 0.16 s and the 

flow rate of 1100 SCCM. The baseline concentration of Hg0 at the ambient temperature was 

about 540 μg/m3 (65.6 ppb). Hg emissions were reduced to about 480 μg/m3 (58.4 ppb) at 600ºC, 

465 μg/m3 (56.7 ppb) at 800ºC, 380 μg/m3 (46.6 ppb) at 1000ºC, and 19 μg/m3 (2.3 ppb) at 

1200ºC. The oxidation at 600ºC did not appear immediately due to the time delaying of the 

reactor heating. The temperature shows a significant effect on Hg emission in the presence of 
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HCl, NO and O2. The Hg emission was decreased with an increase of the temperature. High Hg 

oxidation first appeared at 600ºC. It is found that Hg oxidations in Case VII were higher than Hg 

oxidations in Case IV (HCl) in the whole range of the temperature. The thermal decomposition 

of HCl occurred at the temperatures higher than 700ºC as mentioned above. The reactions among 

HCl, NO and O2 as shown in reactions (8.9) to (8.12) are expected to produce Cl atoms at the 

temperatures higher than 600ºC. 

 

 
Figure 8.5. Hg emissions for Case VII (HCl + NO + O2) in the conditions with the RT of 0.16 s 

and the flow rate of 1100 SCCM. 
 

 

Figure 8.6 presents all of the results on Hg oxidation in the presence of HCl. High Hg 

oxidation first appeared at 900ºC for Case IV (HCl), at 800ºC for Case V (HCl + NO), at 400ºC 

for Case VI (HCl + O2), and at 600ºC for Case VII (HCl + NO + O2). Comparing the results of 

Cases VI (HCl + O2) and VII (HCl + NO + O2), the addition of NO inhibited the overall reaction, 
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and thus the Hg oxidation was observed at 600ºC. NO also inhibited the Hg oxidation at all 

temperatures. The addition of NO shifted the reaction temperature higher from 400 to 600ºC. 

The inhibition of Hg oxidation by NO is a well-known effect in the gas stream in the presence of 

other gas components (e.g. H2O, O2, SO2, and CO2) [74]. In the current case, the reactions 

causing the inhibition are suggested in reaction (8.14) for reducing OH radicals, and hence 

chlorine species. The three-parameter Arrhenius form of the reaction (8.14) is A = 1.3 × 104 

m3/kmol·s, n = 1.88, and Ea = -4003 kJ/kmol [136].  

 

NOOHOHHNO +→+ 2     (8.14) 

 

 
Figure 8.6. Results of Hg oxidation for all cases in the presence of HCl in the conditions with the 

RT of 0.16 s and the flow rate of 1100 SCCM. 
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Based on the comparison results between Cases V (HCl + NO) and VII (HCl + NO + O2), the 

addition of O2 promoted the overall reaction and Hg oxidation. The addition of O2 lowered the 

reaction temperature from 800 to 600ºC. At 1200ºC in all cases in the presence of HCl, the 

results of Hg oxidations were found between 86% and 97%. Therefore, the optimum temperature 

for Hg oxidation can be near 1200ºC since the temperatures higher than 1200ºC will cause other 

emission problems in coal-fired combustors such as the production of thermal NOx. 

 

 
Figure 8.7. Hg oxidations as a function of temperatures for the different residence times with 

1100 SCCM: (a) Case VI (HCl + O2) and (b) Case VII (HCl + NO + O2). 
 

 

8.2.6 Effects of Residence Time (RT) 

In figure 8.7, the effect of the RT on Hg oxidations was examined as a function of the 

temperature with the total flow rate of 1100 SCCM. The RT at 700ºC was estimated as 0.16 s 

when heating zones 2 & 3 are activated and 0.25 s when all three heating zones are activated. 
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The longer RT promoted Hg oxidations in all ranges of the temperature. The extent of the 

increase was greater for higher temperatures such as 600, 800 and 1000ºC. The longer RT 

provided enough time for the reactions among gas components and the thermal decompositions 

of HCl, and hence high Hg oxidations. For Case VII (HCl + NO + O2) in figure 8.7 (b), small 

increases were observed, and it resulted in the inhibition effect of NO was stronger than the 

effect of RT on Hg oxidation. Regardless of the residence time, the Hg oxidations were first 

observed at 400ºC for Case VI and at 600ºC for Case VII. The increase of the RT helped to 

promote Hg oxidations, but caused no effect on the temperature corresponding to the oxidation. 

 

8.2.7 Chemical Equilibrium Calculation 

Since the Cl atom is key species for Hg oxidation, the high production of Cl atoms is 

required to achieve high Hg oxidation. It has been shown that the reaction of Cl atom and Hg0 

expressed in the reaction (8.5) is extremely rapid [136, 137]. Further Cl atom can be produced by 

the reactions of HCl and OH radical. In the current study, chemical equilibrium calculations 

[138] were performed to determine concentrations of Cl atoms and OH radicals for several cases: 

Case IV (HCl), Case V (HCl + NO), and Case VI (HCl + O2). Figure 8.8 shows the results of 

equilibrium calculations for Case IV as a function of temperatures. Minor changes were observed 

until 800ºC; however, above 800ºC the concentrations of chlorine species (Cl and Cl2) increased 

while the amounts of HCl decreased. The concentrations of the Cl and Cl2 increased to a 

maximum of 26 ppb and 6 ppb at 1200ºC, respectively. Thus for Case IV (62 ppb Hg0 and 50 

ppm HCl), the reaction (Hg + 2Cl   HgCl2) will yield and hence about 31% Hg oxidation will 

occur. Though the measurement of chlorine species was not performed during the experiments, 

the indirect comparisons can be noted. If the RT used in the experiments are too short to reach 

the equilibrium condition, the extent of the production and reduction of the chlorine species 
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shown in the calculation results can be higher than those in the experimental results. If the 

kinetics suggests the RT used in the experiments are long enough, then the equilibrium may be 

reached. 

 

 
Figure 8.8. Calculation results in the condition of the chemical equilibrium for Case IV (HCl). 

 

 

ClHMHCl +↔+             (8.15) 

ClHHHCl +→+ 2             (8.16) 

 

A simple kinetic study was performed using reaction rates of reactions (8.15) and (8.16). 

These two reactions are suggested as the main precursory reactions to cause the Hg oxidation in 

Case IV (HCl) in the current study. The reaction (8.15) represented the thermal decomposition of 

HCl. Its reaction rate used for the kinetic calculation was adopted from elsewhere [133]. The 

Arrhenius form of the reaction (8.16) is A = 1.69 × 1010 m3/kmol·s and Ea = 17333 kJ/kmol 
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[136]. The results of the calculation were presented in figure 8.9 as a function of time at 1200ºC. 

Approximately 20 ppb of Cl atoms was produced after 30 seconds when the reaction started at 

1200ºC. Thus, more than 30 seconds of reaction time is required to reach 26 ppb obtained by the 

equilibrium calculation. Based on the results of the kinetic calculation, the production of the 

chlorine atoms during the experiments with the RT of 0.16 or 0.25 s was much lower than the 

results of the equilibrium calculation. 

 

 
Figure 8.9. Calculation results using the reaction rates of Case IV (HCl) at 1200ºC. 

 

 

Unlike Case IV (HCl), for Cases V (HCl + NO) and VI (HCl + O2), enough oxygen atoms 

were available to produce OH radicals which can increase the concentration of Cl atoms. Figure 

8.10 shows the results of equilibrium calculations [138] in the production of Cl atoms for Cases 

V and VI at various temperatures. The results show significant increases of Cl atoms probably 

because of the reactions of HCl and OH radicals expressed in the reaction (8.11). At 1200ºC, the 
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concentration of Cl atom was about 13 ppm for Case V and 26 ppm for Case VI. For all ranges of 

the temperature, the concentrations of Cl atom in Case VI were higher than those in Case V. 

Since higher level of Cl atom can cause higher Hg oxidation, the Hg oxidation for Case VI can  

be higher than that for Case V. 

 

 
Figure 8.10. Calculation results in the condition of the chemical equilibrium for Case V (HCl + 

NO) and Case VI (HCl + O2). 
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8.3 Heterogeneous Hg Reduction Using a Catalyst 

8.3.1 Case VIII (HCl), IX (HCl + O2) and X (HCl + NO + O2) 

Heterogeneous reactions in Hg reduction or capture were investigated using the VWT 

honeycomb monolithic catalyst. The VWT catalyst was placed in the middle of the center 

heating zone of the flow reactor. The residence time of 0.25 s, the space velocity of 70000 h-1, 

the total flow rate of 1100 SCCM, the baseline Hg0 concentration of 50 μg/m3 (6 ppb), and the 

temperature range of 25 to 400ºC were prepared for the tests. The phenomena of absorption and 

emission of the VWT catalyst using ammonia were reported elsewhere [116]. The effect of Hg 

capture was observed during the current tests. About 60 to 70% of the baseline concentration of 

Hg0 was captured and stored at the ambient temperature for all cases tested. The re-emission of 

Hg0 stored in the catalyst was not observed during the total period (about 100 hours) of 

experiments.  

 

 
Figure 8.11. Results of Hg oxidation in heterogeneous reactions with the VWT catalyst in the 

conditions with the RT of 0.25 s and the flow rate of 1100 SCCM. 
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The results of heterogeneous reactions are presented in figure 8.11 for Cases VIII (HCl), IX 

(HCl + O2) and X (HCl + NO + O2). The extent of Hg reductions for all cases was relatively 

similar. The Hg reductions were found to be about 11 to 15% at 100ºC, 34 to 45% at 200ºC, 57 

to 60% at 300ºC, and 69 to 77% at 400ºC. The results in Case X showed the highest Hg 

reduction, and thus it seemed that the catalytic effect was very strong and overcame the 

inhibition effect by NO. The use of the VWT catalyst promoted the reduction of Hg0 and shifted 

the effective temperature lower than the homogeneous cases.  
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9. CONCLUSIONS AND FUTURE WORKS 

 

In this final section, the conclusions of biomass reburning, fouling and Hg oxidation are 

summarized and emphasized. Furthermore, it includes recommendations for future researches. 

 

 

9.1 Conclusions 

9.1.1 Biomass Reburning on NOx Reduction 

NOx reduction studies using a bench-scale 30 kW (100,000 BTU/h) boiler burner facility 

with coal and cattle biomass (CB) as reburn fuels were conducted. The major findings of the 

current research are summarized below: 

1. The extent of NOx reduction is function of types of the reburn fuel, ERRBZ, O2 concentrations 

in the reburn gas, injection angles of the reburn fuel, cross-sectional geometries of the reburn 

nozzles, symmetric and asymmetric reburn injections, reburn heat inputs, baseline NOx 

concentrations, presence and absence of the HEXs. 

2. The significance of each parameter is listed in the order of the significance on NOx 

reduction: (1) ERRBZ, (2) Types of the reburn fuel, (3) Reburn heat inputs, (4) Presence and 

absence of the HEXs, (5) Symmetric and asymmetric reburn injections, (6) Cross- sectional 

geometries of the reburn nozzles, (7) Baseline NOx concentrations, (8) Injection angles of 

the reburn fuel, and (9) O2 concentrations in the reburn gas. 

3. The results showed that CB was a very effective fuel in NOx reduction during reburning 

since the reburning with pure biomass achieved about 96% NOx reduction at ERRBZ = 1.1 

while blended fuels resulted in 80% (80:20 TXLC:LASSDB) and 64% (90:10 

TXLC:LASSDB). TXLC only achieved 48% at ERRBZ = 1.1. 
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4. The use of 12.5% O2 concentration in the reburn gas for the vitiation cases decreased 

combustion temperatures, caused better mixing, decreased the O2 concentration, and 

decreased the rate of oxidizing of N compounds and hence high NOx reductions. 

5. Among several tested configurations of the reburn injection (0° and 45°, circular and oval, 

symmetric and asymmetric), the 45° upward injection provided longer residence time and 

better mixing, hence the highest reduction of NOx emissions. The results by using the 

circular reburn nozzles showed higher NOx reductions than those of oval cases. The results 

of the symmetric cases also showed higher NOx reductions than those of asymmetric cases. 

6. It was found that NOx emissions with the presence of HEXs were lower than those with 

absence of HEXs probably due to the catalytic effect of the fly ash. 

7. Higher NOx reductions were obtained for higher reburn heat input. Considering the fouling 

problems caused by the high reburn heat input, the 20% heat input was considered to be 

better than the 30% heat input for the long-time operation. 

8. High NOx reductions were obtained with the baseline NOx emissions higher than 275 ppm 

(or 230 g/GJ and 0.5 lb/mmBTU) while NOx formations took place with the baseline NOx of 

125 ppm (or 105 g/GJ and 0.24 lb/mmBTU). The baseline NOx level should be carefully 

considered for designing boilers particularly with low-NOx burners. 

9. Burnt fractions increased with the increase of the proportion of CB in reburn fuels because 

CB had higher volatile matter and its particle sizes were smaller compared to TXLC. 

10. According to the results mentioned all of above, the optimum conditions of the boiler 

operation for biomass reburning are recommended as follows: ERRBZ = 1.1, 45° upward 

circular reburn nozzles, 12.5% O2 in the reburn gas, symmetric injection, and presence of 

HEXs. In order to make an effective reburn process, the baseline NOx concentrations must 

be higher than 230 g/GJ (0.5 lb/mmBTU) and the reburn heat input higher than 20%. 
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9.1.2 Fouling Study 

A study of the fouling potential in coal-fired boilers was conducted during biomass 

reburning under the transient and short-time operations. The results are summarized as follows: 

1. A diagnostic method for the study of the ash fouling behavior in transient boiler operations 

was developed. 

2. The presence of ash in the hotter parts of the furnace seemed to promote heat radiation from 

burning particles thus augmenting the heat transfer rate to HEXs. 

3. The growth of the ash layer on the HEX surfaces over longer periods typically lowered the 

OHTC. 

4. Ash analysis was performed using the bottom ash. The results showed lesser percentage of 

combustibles with higher percentage of CB in the blended fuels indicating better BF. 

5. The results indicated almost 100% BF were detected for the samples from all HEX surfaces 

since the fuel particles on the surface kept burning during the combustion. 

6. The behavior of the ash fouling was ranked as follows: LAPCFB (severe) > 70:30 

TXLC:LAPCFB > 90:10TXLC:LAPCFB > TXLC (low). 

7. The use of water instead of air decreased the gas temperatures about 100 to 200 K in the 

similar conditions. The changes of the OHTC were clearly observed with water HEXs. 

8. The OHTC decreased as a function of time by about 26 – 33% with air cooled HEXs and 

about 17 – 82% with water cooled HEXs, and the highest reduction of the OHTC was 

observed for the bottom HEX. 

 

9.1.3 Hg Reduction 

A fundamental study of homogeneous and heterogeneous Hg reduction/oxidation was 

conducted using a plug flow reactor (PFR). The results are summarized as follows: 
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1. Homogeneous Hg oxidations barely took place in the absence of chlorine-containing species 

while the addition of HCl significantly increased Hg oxidations. 

2. A certain amount of HCl (more than 90 ppm or 1.1 × 10-8 moles) was required to cause Hg 

oxidations when only HCl, N2 and Hg were presented in the system. 

3. Hg oxidation increased when NO or O2 was first added into the system, but the further 

addition of high NO concentrations inhibited Hg oxidation. The addition of NO inhibited the 

overall reaction and shifted the reaction temperature higher while the addition of O2 

promoted Hg oxidations and lowered the reaction temperature. 

4. Hg emissions decreased with an increase in the temperature indicating that more oxidation 

took place when the temperature was increased. A mechanism was suggested to explain Hg 

oxidation: the reaction HCl  H + Cl may occur between 700 and 900ºC. 

5. During the heterogeneous reactions, about 60 to 70% of the baseline concentration of Hg0 

was captured and stored by the VWT catalyst. The use of the VWT catalyst promoted the 

reduction of Hg0 and shifted the reaction temperature lower, and it seemed that the catalytic 

effect was very strong, and inhibition effects by NO were not significant. 

 

 



www.manaraa.com

 204

9.2 Future Works 

9.2.1 Biomass Reburning on NOx Reduction 

Though extensive study was conducted in the current work, several recommendations are 

presented as future work in order to better understand the reburn technology with cattle 

waste/biomass. 

1. The extent of formations and destructions of NH3 and HCN derived from fuel-N in CB are 

still unknown. Thus the amounts of NH3 and HCN formed must be measured. 

2. More studies are needed on the effects of the baseline NOx concentration on the NOx 

reduction. 

3. The effects of the particle size of reburn fuels need to be investigated, and the use of finer 

fuels is recommended as 70% of the mass must pass through a 75 μm (200-mesh) sieve. 

4. A study must be conducted on the extent of reburn fuel mixing in the reactor. 

5. The NG composition was assumed to be pure CH4 for all calculations performed in the 

current research. Though this change has negligible effects on experimental conditions, the 

overall empirical chemical formula (CHhNnOo) of NG needs to be used. 

6. Include overfire air or advanced reburning, and compare the results with the finding from the 

current work. 

7. Study the effects of moisture and ash in CB or coals on NOx reduction and combustion 

performance. 

 

9.2.2 Fouling Study 

Recommendations for the future fouling study are as follows. 

1. Coal-fired combustion produces both bottom and fly ash. The ash from CB combustion is 

typically different from ash from coal combustion. The proportions of bottom ash and fly ash 
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must be determined. A sampling system with filter may be used in the gas stream to 

determine amount of fly ash. 

2. The ash fouling results under the steady-state condition should be investigated and compared 

to the transient results in the current work. 

3. Determine the thickness, uniformity and stickiness of ash layer. 

4. Determine the elemental components of the CB ash collected and the loss on ignition (LOI). 

 

9.2.3 Hg Reduction 

Recommendations for the Hg study are as follows. 

1. The species of the oxidized Hg were not detected; only elemental Hg was measured. For 

future study, either Ontario Hydro method or wet chemistry method is suggested to be used 

to detect oxidized mercury. 

2. In order to simulate the realistic flue gas from coal-fired boilers, more gas components such 

as CO, CO2, NO2, H2, SO2, and H2O in the simulated gas in the flow reactor must be 

introduced. 

3. The concentration of HCl from the flue gas of coal-fired boilers must be measured and the 

effects of other chlorine species such as Cl2 can be studied. The effects of NO2, SO2 or H2O 

are also recommended for further study.  

4. An integrated gas analyzer is needed to measure concentrations of HCl and/or Cl2 as well as 

NO, NO2, SO2, CO, and/or CO2. 

5. It is also not known whether Hg reacted in the reactor or in the cooling region. Studies must 

be conducted to determine the extent of Hg absorption in the cooling region. 
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APPENDIX A 

SAUTER MEAN DIAMETER (SMD) CALCULATION 

 

Sauter mean diameter (commonly abbreviated as SMD or d32) is commonly used for 

estimating the average size of solid fuel particles. The SMD is defined as the diameter of a 

sphere that has the same ratio of volume to surface area. It is represented as Eq. (A.1). 
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∑
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⋅

⋅
= n

i
ii

n

i
ii

nd

nd
dorSMD

1

2

1

3

32     (A.1) 

 

where di is the diameter of particles and ni is the number of the particles. The sample calculation 

is presented for LASSDB, and the same method was used for other reburn fuels.  

 

Table A.1. SMD calculations for LASSDB. 

Mesh # Sieve Dia. 
D (μm) 

Mean Size, 
Dm (μm) 

Bigger than D 
(g) 

Bigger than D 
(w%) 

Less than D 
(w%) 

10 2000 - 0.182 0.0420 99.9580 

16 1190 1595 1.125 0.2598 99.6981 

20 840 1015 3.64 0.8407 98.8575 

50 300 570 94.458 21.8150 77.0425 

100 150 225 136.181 31.4509 45.5916 

200 75 112.5 99.068 22.8797 22.7120 

325 45 60 41.575 9.6017 13.1103 

Pan 0 22.5 56.767 13.1103 0 

Total 432.996 100 - 
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Table 5.7. SMD calculations for LASSDB (continued). 

Mesh # Dm × w% 
(μm) 

Volume, 
V (μm3) 

Surface Area, 
As (μm2) 

As / V 
(1/μm) 

As / V × (w% 
/ 100) (1/μm) 

10 - - - - - 

16 4.1441 2.125E+09 7.992E+06 0.0038 9.774E-06 

20 8.5326 5.475E+08 3.237E+06 0.0059 4.969E-05 

50 124.3454 9.697E+07 1.021E+06 0.0105 0.0023 

100 70.7645 5.964E+06 1.590E+05 0.0267 0.0084 

200 25.7396 7.455E+05 3.976E+04 0.0533 0.0122 

325 5.7610 1.131E+05 1.131E+04 0.1000 0.0096 

Pan 2.9498 5.964E+03 1.590E+03 0.2667 0.0350 

Mean Size by Mass = Σ (Dm × w%) = 242.237 μm 
 

 

Table 5.7. SMD calculations for LASSDB (continued). 

Mesh # (w% / 100) / Dm 
(μm) 

V of each group 
(cm3) 

V of each particle 
(cm3) 

# of particle in 
each group (ni) 

10 - 0.5635 - - 

16 1.629E-06 3.4830 2.125E+09 1.639E+09 

20 8.282E-06 11.2693 5.475E+08 2.058E+10 

50 0.0004 292.4396 9.697E+07 3.016E+12 

100 0.0014 421.6130 5.964E+06 7.069E+13 

200 0.0020 306.7121 7.455E+05 4.114E+14 

325 0.0016 128.7152 1.131E+05 1.138E+15 

Pan 0.0058 175.7492 5.964E+03 2.947E+16 

SMD = Σ (Dm,i
3 × ni) / Σ (Dm,i

2 × ni) = 88.8415 μm 
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APPENDIX B 

FUEL-NITROGEN (N) ANALYSIS 

 

In order to remove certain amounts of NOx, it is very useful to know how much of NH3 is 

required because of the limited amounts of biomass sources which NH3 comes from. The 

combustion of the primary and the reburn fuels is represented as Eq. (B.1). 

 

( ) 22222222 eNdOcSOObHCONBOHAOaSONCH sonh ++++→⋅+⋅++  (B.1) 
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The mole flow rates in the primary and reburn zones on a dry basis are obtained as 

 

( )edcNN PRZPRZdry +++×= 1,
&&        (B.2) 

( )edcNN combRBZRBZdry +++××= η1,
&&             (B.3) 

 

where PRZN&  is a mole flow rate in the primary zone, PRZdryN ,
&  is a mole flow rate in the primary 

zone on a dry basis, RBZN&  is a mole flow rate of the reburn zone, and PRZdryN ,
&  is a mole flow 

rate of the reburn zone on a dry basis. The combustion efficiency, combη , should be considered 

for reburn combustion. The mole flow rates at the furnace exit is  
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RBZdryPRZdryexitdry NNN ,,,
&&& +=     (B.4) 

 

The amounts of NO reduced by the reburn combustion is  

 

exitNOxexitdryPRZNOxPRZdryreducedNOx xNxNN ,,,,, ×−×= &&&          (B.5) 

 

where xNOx,PRZ is an initial mole fraction of NOx produced by the primary fuel, and xNOx,exit is a 

final mole fraction of NOx at the furnace exit. The amounts of NH3 used by the reburn 

combustion is calculated based on the chemical reaction (B.6) 

 

OHNNONH 223 5.125.15.1 +→+             (B.6) 

5.1:1: ,,3
=reducedNOrequiredNH NN &&         (B.7) 

 

The reburn fuels contain X% nitrogen, Y% moisture and Z% ash on a mass basis. The mole flow 

rate of the fuel-nitrogen in the reburn zone is 

 

kNN usedNHNXDAF /,%, 3
&& =     (B.8) 

 

where NXDAFN %,
&  is the mole flow rate of X% fuel-nitrogen in the reburn zone on a dry ash free 

(DAF) basis, usedNHN ,3
& is the mole flow rate used for 90% NOx reduction, and k is the amounts 

(%) of NH3 converted from the fuel-nitrogen. 
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where NXN %
&  is the mole flow rate of the fuel-nitrogen in the reburn fuel on an ‘as received’ 

basis, and RBZN&  is the mole flow rate of the reburn fuel on an ‘as received’ basis. Finally, the 

amounts of the reburn fuels required for 90% reduction of the NO emission can be obtained by 

Eq. (B.10) depending on amounts of the fuel-nitrogen, amounts of NH3 conversion from the 

fuel-nitrogen and other fuel properties. 

 

Table B.1. Operating conditions for biomass reburning. 
Heat Input by Primary Fuel 70% (21 kW or 70,000 BTU/h) 

Primary Equivalence Ratio (ERPRZ) 0.95 

Flow Rate of Primary Fuel (NG) 30.1 SLPM (63.9 SCFH) 

Flow Rate of Primary Air 320.3 SLPM (678.7 SCFH) 

Flow Rate of Ammonia (NH3) 0.12 SLPM (0.265 SCFH) 

Heat Input by Reburn Fuel 30% (9 kW or 30,000 BTU/h) 

RBZ Equivalence Ratio (ERRBZ) 1.10 
 

 

The operation conditions for reburn experiments are listed in Table B.1. It was essentially 

assumed (1) All amounts of fuel-nitrogen in biomass convert to 60% NH3, 30% HCN and 10% 

N2 on a mass basis, and (2) All amounts of fuel-nitrogen in coals convert to 30% NH3, 60% 

HCN and 10% N2 on a mass basis. 
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The results of minimum amounts of the reburn fuels required to achieve 90% NOx reduction 

are presented in figure B.1. The amounts of LASSD and LAPCFB were typically required three 

or four time less than those of coals while LAPCFB needed similar amounts to coals due to its 

high ash contents. Ratios between amounts of required and supplied reburn fuels are presented in 

figure B.2. In order to achieve 90% NOx reduction, about 10 to 20% more fuel was required for 

coals while about 20 to 30% of the supplied fuels was required for biomass. Comparing to the 

experimental results, the conversion proportions from fuel-nitrogen to NH3, HCN and N2 were 

found to be overestimated to predict the proper fuel consumptions. The conversions of fuel-

nitrogen to both NH3 and HCN were reported 15% and 11% for chicken litter and 11% and 6% 

for coals using a heating rate of 100ºC/min [16]. Since the heating rate during reburning was 

approximately 1100ºC/s, the real conversion proportions can be higher than what they were 

reported. The results using the conversion proportions reported in the literature are presented in 

figure B.3.  The results in figures B.2 and B.3 can provide the range of fuel consumptions. 

 

 
Figure B.1. Minimum amounts of the reburn fuels required to achieve 90% NOx reduction. 
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Figure B.2. Ratios between amounts of required and supplied reburn fuels for 90% NOx 

reduction by reburning. 
 
 
 

 
Figure B.3. Reburn fuel ratios using the conversion proportions reported elsewhere [16]. 
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APPENDIX C 

ASH FORMATION ANALYSIS 

 

The prediction of the ash concentration [kg/m3] on the surface of HEXs is briefly discussed 

in this section. The ash concentration is defined as the amount of ash in the unit volume of the 

gas stream. The ash fraction, Yash of the total gas stream is expressed as  

 

,fuel ash rash
ash

t t

m ymY
m m

×
= =

&&

& &
    (C.1) 

RBairfuelPRairNGt mmmmm ,, &&&&& +++=           (C.2) 

 

where yash,r is an ash fraction in the dry solid reburn fuels, fuelm&  is a mass flow rate of the reburn 

fuel, tm&  is a total mass flow rate of the gas stream in the boiler, NGm&  is a mass flow rate of 

natural gas, PRairm ,&  is a mass flow rate of the primary air, and RBairm ,&  is a mass flow rate of the 

reburn air. 

With the assumptions of 1) complete release of ash from fuel and 2) the complete 

combustion with CO2, O2, H2O, and mainly N2, the ash concentration, Cash can be expressed as 
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Ym
V
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&

&

&
& ,==     (C.3) 

 

where ashm&  is a mass flow rate of the ash in the gas stream and gasV&  is the volume flow rate of 

the gas in the gas stream. 
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APPENDIX D 

MIXING TIME ESTIMATION 

 

Mixing time and residence time of the hot flue gas in the reactor was estimated for the 0° 

injection using CO2 and air. This test was performed after the primary fuel shut off. Air was only 

injected from the primary port when the reactor was still hot. The flow rate of air from the 

primary port was increased to maintain the total flow rate from the primary burner. Not all 

amount of the reburn gas was replaced by CO2 because of the flow limit of the mass flow 

controller. See Table D.1 for detailed conditions. 

 

Table D.1. Test conditions for the mixing time estimation. 
Gas Type Flow Rate 

Air from the primary burner 350 SLPM 

Air from the reburn nozzles 33 SLPM 

CO2 from the reburn nozzles 94 SLPM 

Total flow 477 SLPM 
 

 

The concentration of CO2 was measured at three locations which were 6, 12 and 18 in below 

the reburn nozzles. The residence times at those three locations were estimated as 350, 700 and 

1050 ms, respectively. The results showed the CO2 concentrations were similar for all cases 

though a little increase was observed as a function of distance. The complete mixing was not 

observed at those locations; however, it can be concluded the major mixing took place less than 

350 ms. As the fuel particles are injected into the reactor, the mixing time can be longer than 350 

ms because the fuel particles are heavier than the CO2 particles. 
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